
Computer Science (CS) 1

COMPUTER SCIENCE (CS)
CS 100A. Problem-solving Lab for CS106A. 1 Unit.
Additional problem solving practice for the introductory CS course CS
106A. Sections are designed to allow students to acquire a deeper
understanding of CS and its applications, work collaboratively, and
develop a mastery of the material. Limited enrollment, permission of
instructor required. Concurrent enrollment in CS 106A required.

CS 100B. Problem-solving Lab for CS106B. 1 Unit.
Additional problem solving practice for the introductory CS course
CS106B. Sections are designed to allow students to acquire a deeper
understanding of CS and its applications, work collaboratively, and
develop a mastery of the material. Limited enrollment, permission of
instructor required. Concurrent enrollment in CS 106B required.

CS 101. Introduction to Computing Principles. 3-5 Units.
Introduces the essential ideas of computing: data representation,
algorithms, programming "code", computer hardware, networking,
security, and social issues. Students learn how computers work and what
they can do through hands-on exercises. In particular, students will see
the capabilities and weaknesses of computer systems so they are not
mysterious or intimidating. Course features many small programming
exercises, although no prior programming experience is assumed or
required. CS101 is not a complete programming course such as CS106A.
CS101 is effectively an alternative to CS105. A laptop computer is
recommended for the in-class exercises.

CS 103. Mathematical Foundations of Computing. 3-5 Units.
What are the theoretical limits of computing power? What problems can
be solved with computers? Which ones cannot? And how can we reason
about the answers to these questions with mathematical certainty?
This course explores the answers to these questions and serves as
an introduction to discrete mathematics, computability theory, and
complexity theory. At the completion of the course, students will feel
comfortable writing mathematical proofs, reasoning about discrete
structures, reading and writing statements in first-order logic, and
working with mathematical models of computing devices. Throughout
the course, students will gain exposure to some of the most exciting
mathematical and philosophical ideas of the late nineteenth and
twentieth centuries. Specific topics covered include formal mathematical
proofwriting, propositional and first-order logic, set theory, binary
relations, functions (injections, surjections, and bijections), cardinality,
basic graph theory, the pigeonhole principle, mathematical induction,
finite automata, regular expressions, the Myhill-Nerode theorem, context-
free grammars, Turing machines, decidable and recognizable languages,
self-reference and undecidability, verifiers, and the P versus NP question.
Students with significant proofwriting experience are encouraged to
instead take CS154. Students interested in extra practice and support
with the course are encouraged to concurrently enroll in CS103A.
Prerequisite: CS106B or equivalent. CS106B may be taken concurrently
with CS103.

CS 103A. Mathematical Problem-solving Strategies. 1 Unit.
Problem solving strategies and techniques in discrete mathematics
and computer science. Additional problem solving practice for CS103.
In-class participation required. Prerequisite: consent of instructor. Co-
requisite: CS103.

CS 105. Introduction to Computers. 3-5 Units.
For non-technical majors. What computers are and how they work.
Practical experience in programming. Construction of computer
programs and basic design techniques. A survey of Internet technology
and the basics of computer hardware. Students in technical fields and
students looking to acquire programming skills should take 106A or
106X. Students with prior computer science experience at the level of 106
or above require consent of instructor. Prerequisite: minimal math skills.

CS 106A. Programming Methodology. 3-5 Units.
Introduction to the engineering of computer applications emphasizing
modern software engineering principles: program design, decomposition,
encapsulation, abstraction, and testing. Emphasis is on good
programming style and the built-in facilities of respective languages.
Uses the Python programming language. No prior programming
experience required.

CS 106AX. Programming Methodologies in JavaScript and Python. 3-5
Units.
Introduction to the engineering of computer applications emphasizing
modern software engineering principles: object-oriented design,
decomposition, encapsulation, abstraction, and testing. This course
targets an audience with prior programming experience, and that prior
experience is leveraged so material can be covered in greater depth.
Same as: Accelerated

CS 106B. Programming Abstractions. 3-5 Units.
Abstraction and its relation to programming. Software engineering
principles of data abstraction and modularity. Object-oriented
programming, fundamental data structures (such as stacks, queues, sets)
and data-directed design. Recursion and recursive data structures (linked
lists, trees, graphs). Introduction to time and space complexity analysis.
Uses the programming language C++ covering its basic facilities.
Prerequisite: 106A or equivalent.

CS 106E. Exploration of Computing. 3-4 Units.
A follow up class to CS106A for non-majors which will both provide
practical web programming skills and cover essential computing
topics including computer security and privacy. Additional topics will
include digital representation of images and music, an exploration of
how the Internet works, and a look at the internals of the computer.
Students taking the course for 4 units will be required to carry out
supplementary programming assignments in addition to the course's
regular assignments. Prerequisite: 106A or equivalent.

CS 106L. Standard C++ Programming Laboratory. 1 Unit.
Supplemental lab to 106B and 106X. Additional features of standard C+
+ programming practice. Possible topics include advanced C++ language
features, standard libraries, STL containers and algorithms, templates,
object memory management, operator overloading, and move semantics.
Prerequisite: consent of instructor. Corequisite: CS106B or CS106X.

CS 106M. Enrichment Adventures in Programming Abstractions. 1 Unit.
This enrichment add-on is a companion course to CS106B to explore
additional topics and go into further depth. Specific topics to be
announced per-quarter. Fall quarter 2020 will focus on the algorithms
that power our modern world -- search engines, pattern recognition, data
compression/encryption, error correction, digital signatures, and others.
Students must be co-enrolled in CS106B. Refer to cs106m.stanford.edu
for more information.

CS 106S. Coding for Social Good. 1 Unit.
Survey course on applications of fundamental computer science
concepts from CS 106B/X to problems in the social good space (such as
health, government, education, and environment). Each week consists
of in-class activities designed by student groups, local tech companies,
and nonprofits. Introduces students to JavaScript and the basics of web
development. Some of the topics we will cover include mental health
chatbots, tumor classification with basic machine learning, sentiment
analysis of tweets on refugees, and storytelling through virtual reality.
Pre/Corequisite: CS106B or CS106X.

CS 106X. Programming Abstractions. 3-5 Units.
Intensive version of 106B for students with a strong programming
background interested in a rigorous treatment of the topics at an
accelerated pace. Significant amount of additional advanced material and
substantially more challenging projects. Some projects may relate to CS
department research. Prerequisite: excellence in 106A or equivalent, or
consent of instructor.
Same as: Accelerated

Stanford Bulletin 2020-21

2 Computer Science (CS)

CS 107. Computer Organization and Systems. 3-5 Units.
Introduction to the fundamental concepts of computer systems. Explores
how computer systems execute programs and manipulate data, working
from the C programming language down to the microprocessor. Topics
covered include: the C programming language, data representation,
machine-level code, computer arithmetic, elements of code compilation,
memory organization and management, and performance evaluation and
optimization. Prerequisites: 106B or X, or consent of instructor.

CS 107A. Problem-solving Lab for CS107. 1 Unit.
Additional problem solving practice for the introductory CS course
CS107. Sections are designed to allow students to acquire a deeper
understanding of CS and its applications, work collaboratively, and
develop a mastery of the material. Limited enrollment, permission of
instructor required. Concurrent enrollment in CS 107 required.

CS 107E. Computer Systems from the Ground Up. 3-5 Units.
Introduction to the fundamental concepts of computer systems through
bare metal programming on the Raspberry Pi. Explores how five concepts
come together in computer systems: hardware, architecture, assembly
code, the C language, and software development tools. Students do
all programming with a Raspberry Pi kit and several add-ons (LEDs,
buttons). Topics covered include: the C programming language, data
representation, machine-level code, computer arithmetic, compilation,
memory organization and management, debugging, hardware, and I/O.
Prerequisite: CS106B or CS106X, and consent of instructor.

CS 108. Object-Oriented Systems Design. 3-4 Units.
Software design and construction in the context of large OOP libraries.
Taught in Java. Topics: OOP design, design patterns, testing, graphical
user interface (GUI) OOP libraries, software engineering strategies,
approaches to programming in teams. Prerequisite: 107.

CS 109. Introduction to Probability for Computer Scientists. 3-5 Units.
Topics include: counting and combinatorics, random variables,
conditional probability, independence, distributions, expectation, point
estimation, and limit theorems. Applications of probability in computer
science including machine learning and the use of probability in the
analysis of algorithms. Prerequisites: 103, 106B or X, multivariate
calculus at the level of MATH 51 or CME 100 or equivalent.

CS 109A. Problem-solving Lab for CS109. 1 Unit.
Additional problem solving practice for the introductory CS course
CS109. Sections are designed to allow students to acquire a deeper
understanding of CS and its applications, work collaboratively, and
develop a mastery of the material. Enrollment limited to 30 students,
permission of instructor required. Concurrent enrollment in CS 109
required.

CS 110. Principles of Computer Systems. 3-5 Units.
Principles and practice of engineering of computer software and
hardware systems. Topics include: techniques for controlling complexity;
strong modularity using client-server design, virtual memory, and threads;
networks; atomicity and coordination of parallel activities. Prerequisite:
107.

CS 110A. Problem Solving Lab for CS110. 1 Unit.
Additional design and implementation problems to complement the
material taught in CS110. In-class participation is required. Prerequisite:
consent of instructor. Corequisite: CS110.

CS 110L. Principles of Computer Systems Laboratory. 2 Units.
Supplemental lab to CS110. Examines how the Rust programming
language can be used to build robust systems software. Course
is project-based and will explore additional topics in filesystems,
concurrency, and networking through the lens of Rust. Corequisite:
CS110.

CS 111. Operating Systems Principles. 3-5 Units.
Explores operating system concepts including concurrency,
synchronization, scheduling, processes, virtual memory, I/O, file systems,
and protection. Available as a substitute for CS110 that fulfills any
requirement satisfied by CS110. Prerequisite: CS107.

CS 11SI. How to Make VR: Introduction to Virtual Reality Design and
Development. 2 Units.
In this hands-on, experiential course, students will design and develop
virtual reality applications. You'll learn how to use the Unity game engine,
the most popular platform for creating immersive applications. The
class will teach the design best-practices and the creation pipeline for
VR applications. Students will work in groups to present a final project
in building an application for the Oculus Go headset. Enrollment is
limited and by application only. See https://cs11si.stanford.edu for more
information. Prerequisite: CS 106A or equivalent.

CS 124. From Languages to Information. 3-4 Units.
Extracting meaning, information, and structure from human language
text, speech, web pages, social networks. Introducing methods (regex,
edit distance, naive Bayes, logistic regression, neural embeddings,
inverted indices, collaborative filtering, PageRank), applications
(chatbots, sentiment analysis, information retrieval, question answering,
text classification, social networks, recommender systems), and ethical
issues in both. Prerequisites: CS106B.
Same as: LINGUIST 180, LINGUIST 280

CS 129. Applied Machine Learning. 3-4 Units.
(Previously numbered CS 229A.) You will learn to implement and
apply machine learning algorithms. This course emphasizes practical
skills, and focuses on giving you skills to make these algorithms work.
You will learn about commonly used learning techniques including
supervised learning algorithms (logistic regression, linear regression,
SVM, neural networks/deep learning), unsupervised learning algorithms
(k-means), as well as learn about specific applications such as anomaly
detection and building recommender systems. This class is taught in the
flipped-classroom format. You will watch videos and complete in-depth
programming assignments and online quizzes at home, then come to
class for discussion sections. This class will culminate in an open-ended
final project, which the teaching team will help you on. Prerequisites:
Programming at the level of CS106B or 106X, and basic linear algebra
such as Math 51.

CS 131. Computer Vision: Foundations and Applications. 3-4 Units.
Computer Vision technologies are transforming automotive, healthcare,
manufacturing, agriculture and many other sections. Today, household
robots can navigate spaces and perform duties, search engines can index
billions of images and videos, algorithms can diagnose medical images
for diseases, and smart cars can see and drive safely. Lying in the heart
of these modern AI applications are computer vision technologies that
can perceive, understand, and reconstruct the complex visual world. This
course is designed for students who are interested in learning about the
fundamental principles and important applications of Computer Vision.
This course will introduce a number of fundamental concepts in image
processing and expose students to a number of real-world applications.
It will guide students through a series of projects to implement cutting-
edge algorithms. There will be optional discussion sections on Fridays.
Prerequisites: Students should be familiar with Python, Calculus & Linear
Algebra.

CS 140. Operating Systems and Systems Programming. 3-4 Units.
Operating systems design and implementation. Basic structure;
synchronization and communication mechanisms; implementation of
processes, process management, scheduling, and protection; memory
organization and management, including virtual memory; I/O device
management, secondary storage, and file systems. Prerequisite: CS110.

CS 140E. Operating systems design and implementation. 3-4 Units.
Students will implement a simple, clean operating system (virtual
memory, processes, file system) in the C programming language, on a
rasberry pi computer and use the result to run a variety of devices and
implement a final project. All hardware is supplied by the instructor,
and no previous experience with operating systems, raspberry pi, or
embedded programming is required.

Stanford Bulletin 2020-21

Computer Science (CS) 3

CS 141. Introduction to Computer Sound. 3 Units.
Core mathematics and methods for computer sound with applications
to computer science. Background on digital signal processing; time- and
frequency-domain methods. Project-focussed exploration of computer
sound areas: fundamentals of sound analysis & synthesis, robotics
and learning (sound features, filterbanks & deep learning, perception,
localization, tracking, manipulation), speech (recognition, synthesis),
virtual and augmented reality (3D auralization, HRTFs, reverberation),
computational acoustics (wave simulation, physics-based modeling,
animation sound), computer music (music synthesis, instrument
modeling, audio effects, historical aspects), games (game audio, music
and sound design, middleware), hardware acceleration (architectures,
codecs, synthesizers). Prerequisite: CS 106A or equivalent programming
experience.

CS 142. Web Applications. 3 Units.
Concepts and techniques used in constructing interactive web
applications. Browser-side web facilities such as HTML, cascading
stylesheets, the document object model, and JavaScript frameworks
and Server-side technologies such as server-side JavaScript, sessions,
and object-oriented databases. Issues in web security and application
scalability. New models of web application deployment. Prerequisite: CS
107.

CS 143. Compilers. 3-4 Units.
Principles and practices for design and implementation of compilers
and interpreters. Topics: lexical analysis; parsing theory; symbol tables;
type systems; scope; semantic analysis; intermediate representations;
runtime environments; code generation; and basic program analysis and
optimization. Students construct a compiler for a simple object-oriented
language during course programming projects. Prerequisites: 103 or
103B, and 107.

CS 144. Introduction to Computer Networking. 3-4 Units.
Principles and practice. Structure and components of computer
networks, with focus on the Internet. Packet switching, layering, and
routing. Transport and TCP: reliable delivery over an unreliable network,
flow control, congestion control. Network names, addresses and ethernet
switching. Includes significant programming component in C/C++;
students build portions of the internet TCP/IP software. Prerequisite:
CS110.

CS 145. Data Management and Data Systems. 3-4 Units.
Introduction to the use, design, and implementation of database and
data-intensive systems, including data models; schema design; data
storage; query processing, query optimization, and cost estimation;
concurrency control, transactions, and failure recovery; distributed and
parallel execution; semi-structured databases; and data system support
for advanced analytics and machine learning. Prerequisites: 103 and 107
(or equivalent).

CS 146. Introduction to Game Design and Development. 3-4 Units.
This project-based course provides a survey on designing and
engineering video games. Through creating their own games each
week, students explore topics including 2D/3D Art, Audio, User Interface
design, Production, Narrative Design, Marketing, and Publishing.
Speakers from the games industry will provide insights and context
during a weekly seminar. Classroom meetings will be used to foster
student project discussions, and deepen understanding of material.
The course culminates with students forming project teams to create a
final video game. Assignments will be completed within the Unity game
development engine; prior Unity experience is welcomed but not required.
Given class size limitations, an online survey will be used to achieve a
diverse class composition. Prerequisite: CS 106 (B or X).

CS 147. Introduction to Human-Computer Interaction Design. 3-5 Units.
Introduces fundamental methods and principles for designing,
implementing, and evaluating user interfaces. Topics: user-centered
design, rapid prototyping, experimentation, direct manipulation, cognitive
principles, visual design, social software, software tools. Learn by doing:
work with a team on a quarter-long design project, supported by lectures,
readings, and studios. Prerequisite: 106B or X or equivalent programming
experience. Recommended that CS Majors have also taken one of 142,
193P, or 193A.

CS 148. Introduction to Computer Graphics and Imaging. 3-4 Units.
Introductory prerequisite course in the computer graphics sequence
introducing students to the technical concepts behind creating synthetic
computer generated images. In addition to scanline rendering, ray tracing
is introduced at the beginning of the course, since modern consoles
now include ray tracing. This is followed by discussions of underlying
mathematical concepts including triangles, normals, interpolation,
texture/bump mapping, anti-aliasing, acceleration structures, etc.
Importantly, the course will discuss handling light/color for image
formats, computer displays, printers, etc., as well as how light interacts
with the environment, constructing engineering models such as the BRDF,
and various simplifications into more basic lighting and shading models.
The final class mini-project consists of building out a ray tracer to create
visually compelling images. Starter codes and code bits will be provided
to aid in development, but this class focuses on what you can do with
the code as opposed to what the code itself looks like. Therefore grading
is weighted toward in person "demos" of the code in action - creativity
and the production of impressive visual imagery are highly encouraged/
rewarded. Prerequisites: CS107, MATH51.

CS 149. Parallel Computing. 3-4 Units.
This course is an introduction to parallelism and parallel programming.
Most new computer architectures are parallel; programming these
machines requires knowledge of the basic issues of and techniques
for writing parallel software. Topics: varieties of parallelism in current
hardware (e.g., fast networks, multicore, accelerators such as GPUs,
vector instruction sets), importance of locality, implicit vs. explicit
parallelism, shared vs. non-shared memory, synchronization mechanisms
(locking, atomicity, transactions, barriers), and parallel programming
models (threads, data parallel/streaming, MapReduce, Apache Spark,
SPMD, message passing, SIMT, transactions, and nested parallelism).
Significant parallel programming assignments will be given as homework.
The course is open to students who have completed the introductory CS
course sequence through 110.

CS 151. Logic Programming. 3 Units.
Logic Programming is a style of programming based on symbolic logic.
In writing a logic program, the programmer describes the application
area of the program (as a set of logical sentences) without reference
to the internal data structures or operations of the system executing
the program. In this regard, a logic program is more of a specification
than an implementation; and logic programs are often called runnable
specifications. This course introduces basic logic programming theory,
current technology, and examples of common applications, notably
deductive databases, logical spreadsheets, enterprise management,
computational law, and game playing. Work in the course takes the form
of readings and exercises, weekly programming assignments, and a term-
long project. Prerequisite: CS 106B or equivalent.

Stanford Bulletin 2020-21

4 Computer Science (CS)

CS 152. Trust and Safety Engineering. 3 Units.
An introduction to the ways consumer internet services are abused
to cause real human harm and the potential operational, product and
engineering responses. Students will learn about spam, fraud, account
takeovers, the use of social media by terrorists, misinformation, child
exploitation, harassment, bullying and self-harm. This will include
studying both the technical and sociological roots of these harms and
the ways various online providers have responded. Our goal is to provide
students with an understanding of how the technologies they may build
have been abused in the past and how they might spot future abuses
earlier. The class is taught by a long-time practitioner and supplemented
by guest lecturers from tech companies and non-profits. Fulfills the
Technology in Society requirement. Prerequisite: CS106B or equivalent
for grad students. Content note: This class will cover real-world harmful
behavior and expose students to potentially upsetting material.

CS 154. Introduction to the Theory of Computation. 3-4 Units.
This course provides a mathematical introduction to the following
questions: What is computation? Given a computational model, what
problems can we hope to solve in principle with this model? Besides
those solvable in principle, what problems can we hope to efficiently
solve? In many cases we can give completely rigorous answers; in
other cases, these questions have become major open problems
in computer science and mathematics. By the end of this course,
students will be able to classify computational problems in terms of
their computational complexity (Is the problem regular? Not regular?
Decidable? Recognizable? Neither? Solvable in P? NP-complete? PSPACE-
complete?, etc.). Students will gain a deeper appreciation for some of
the fundamental issues in computing that are independent of trends
of technology, such as the Church-Turing Thesis and the P versus NP
problem. Prerequisites: CS 103 or 103B.

CS 155. Computer and Network Security. 3 Units.
For seniors and first-year graduate students. Principles of computer
systems security. Attack techniques and how to defend against them.
Topics include: network attacks and defenses, operating system security,
application security (web, apps, databases), malware, privacy, and
security for mobile devices. Course projects focus on building reliable
code. Prerequisite: 110. Recommended: basic Unix.

CS 157. Computational Logic. 3 Units.
Rigorous introduction to Symbolic Logic from a computational
perspective. Encoding information in the form of logical sentences.
Reasoning with information in this form. Overview of logic technology
and its applications - in mathematics, science, engineering, business, law,
and so forth. Topics include the syntax and semantics of Propositional
Logic, Relational Logic, and Herbrand Logic, validity, contingency,
unsatisfiability, logical equivalence, entailment, consistency, natural
deduction (Fitch), mathematical induction, resolution, compactness,
soundness, completeness.

CS 161. Design and Analysis of Algorithms. 3-5 Units.
Worst and average case analysis. Recurrences and asymptotics. Efficient
algorithms for sorting, searching, and selection. Data structures: binary
search trees, heaps, hash tables. Algorithm design techniques: divide-
and-conquer, dynamic programming, greedy algorithms, amortized
analysis, randomization. Algorithms for fundamental graph problems:
minimum-cost spanning tree, connected components, topological sort,
and shortest paths. Possible additional topics: network flow, string
searching. Prerequisite: 103 or 103B; 109 or STATS 116.

CS 161A. Problem-Solving Lab for CS161. 1 Unit.
Additional problem solving practice for CS161. Sections are designed
to allow students to acquire a deeper understanding of CS and its
applications, work collaboratively, and develop a mastery of the material.
Concurrent enrollment in CS 161 required. Limited enrollment, permission
of instructor, and application required.

CS 163. The Practice of Theory Research. 3 Units.
(Previously numbered CS 353). Introduction to research in the Theory
of Computing, with an emphasis on research methods (the practice
of research), rather than on any particular body of knowledge. The
students will participate in a highly structured research project:
starting from reading research papers from a critical point of view and
conducting bibliography searches, through suggesting new research
directions, identifying relevant technical areas, and finally producing and
communicating new insights. The course will accompany the projects
with basic insights on the main ingredients of research. Research
experience is not required, but basic theory knowledge and mathematical
maturity are expected. The target participants are advanced undergrads
as well as MS students with interest in CS theory. Prerequisites: CS161
and CS154. Limited class size.

CS 166. Data Structures. 3-4 Units.
This course is designed as a deep dive into the design, analysis,
implementation, and theory of data structures. Over the course of the
quarter, we'll explore fundamental techniques in data structure design
(isometries, amortization, randomization, word-level parallelism, etc.).
In doing so, we'll see a number of classic data structures like Fibonacci
heaps and suffix trees as well as more modern data structures like count-
min sketches and range minimum queries. By the time we've finished,
we'll have seen some truly beautiful strategies for solving problems
efficiently. Prerequisites: CS107 and CS161.

CS 168. The Modern Algorithmic Toolbox. 3-4 Units.
This course will provide a rigorous and hands-on introduction to the
central ideas and algorithms that constitute the core of the modern
algorithms toolkit. Emphasis will be on understanding the high-level
theoretical intuitions and principles underlying the algorithms we discuss,
as well as developing a concrete understanding of when and how to
implement and apply the algorithms. The course will be structured as
a sequence of one-week investigations; each week will introduce one
algorithmic idea, and discuss the motivation, theoretical underpinning,
and practical applications of that algorithmic idea. Each topic will be
accompanied by a mini-project in which students will be guided through
a practical application of the ideas of the week. Topics include hashing,
dimension reduction and LSH, boosting, linear programming, gradient
descent, sampling and estimation, and an introduction to spectral
techniques. Prerequisites: CS107 and CS161, or permission from the
instructor.

CS 170. Stanford Laptop Orchestra: Composition, Coding, and
Performance. 1-5 Unit.
Classroom instantiation of the Stanford Laptop Orchestra (SLOrk) which
includes public performances. An ensemble of more than 20 humans,
laptops, controllers, and special speaker arrays designed to provide each
computer-mediated instrument with its sonic identity and presence.
Topics and activities include issues of composing for laptop orchestras,
instrument design, sound synthesis, programming, and live performance.
May be repeated four times for credit. Space is limited; see https://
ccrma.stanford.edu/courses/128 for information about the application
and enrollment process. May be repeat for credit.
Same as: MUSIC 128

CS 181. Computers, Ethics, and Public Policy. 4 Units.
Ethical and social issues related to the development and use of
computer technology. Ethical theory, and social, political, and legal
considerations. Scenarios in problem areas: privacy, reliability and
risks of complex systems, and responsibility of professionals for
applications and consequences of their work. Prerequisite: CS106A. To
take this course, students need permission of instructor and may need to
complete an assignment due at the first day of class. Please see https://
cs181.stanford.edu for more information.

Stanford Bulletin 2020-21

Computer Science (CS) 5

CS 181W. Computers, Ethics, and Public Policy. 4 Units.
Writing-intensive version of CS181. Satisfies the WIM requirement for
Computer Science, Engineering Physics, STS, and Math/Comp Sci
undergraduates. To take this course, students need permission of
instructor and may need to complete an assignment due at the first day
of class. Please see https://cs181.stanford.edu for more information.
Same as: WIM

CS 182. Ethics, Public Policy, and Technological Change. 5 Units.
Examination of recent developments in computing technology and
platforms through the lenses of philosophy, public policy, social
science, and engineering. Course is organized around four main units:
algorithmic decision-making and bias; data privacy and civil liberties;
artificial intelligence and autonomous systems; and the power of private
computing platforms. Each unit considers the promise, perils, rights,
and responsibilities at play in technological developments. Prerequisite:
CS106A.
Same as: COMM 180, ETHICSOC 182, PHIL 82, POLISCI 182, PUBLPOL
182

CS 182W. Ethics, Public Policy, and Technological Change. 5 Units.
Writing-intensive version of CS182. Satisfies the WIM requirement for
Computer Science, Engineering Physics, STS, and Math/Comp Sci
undergraduates (and is only open to those majors). Prerequisite: CS106A.
See CS182 for lecture day/time information. Enroll in either CS 182 or
CS 182W, not both. Enrollment in WIM version of the course is limited to
120 students. Enrollment is restricted to seniors and coterminal students
until January 4, 2021. Starting January 4, 2021, enrollment will open to all
students if additional spaces remain available in the class.
Same as: WIM

CS 183E. Effective Leadership in High-Tech. 1 Unit.
You will undoubtedly leave Stanford with the technical skills to excel
in your first few jobs. But non-technical skills are just as critical to
making a difference. This seminar is taught by two industry veterans
in engineering leadership and product management. In a small group
setting, we will explore how you can be a great individual contributor
(communicating with clarity, getting traction for your ideas, resolving
conflict, and delivering your best work) and how you can transition
into leadership roles (finding leadership opportunities, creating a great
team culture, hiring and onboarding new team members). We will end
by turning back to your career (picking your first job and negotiating
your offer, managing your career changes, building a great network, and
succeeding with mentors). Prerequisites: Preference given to seniors and
co-terms in Computer Science and related majors. Enrollment limited and
application required for admittance.

CS 184. Bridging Policy and Tech Through Design. 3-4 Units.
This project-based course aims to bring together students from
computer science and the social sciences to work with external partner
organizations at the nexus of digital technology and public policy.
Students will collaborate in interdisciplinary teams on a problem with
a partner organization. Along with the guidance of faculty mentors and
the teaching staff, students will engage in a project with outcomes
ranging from policy memos and white papers to data visualizations
and software. Possible projects suggested by partner organizations
will be presented at an information session in early March. Following
the infosession, a course application will open for teams to be selected
before the start of Spring Quarter. Students may apply to a project with
a partner organization or with a preformed team and their own idea to be
reviewed for approval by the course staff. There will be one meeting per
week for the full class and at least one weekly meeting with the project-
based team mentors. Prerequisites: Appropriate preparation depends on
the nature of the project proposed, and will be verified by the teaching
staff based on your application.
Same as: PUBLPOL 170

CS 187. Design for Impact in Social Systems. 3-4 Units.
The COVID pandemic has both revealed many of our underlying
civilization problems and unleashed a desire for radical change. Effective
responses will require people who know how to collaborate creatively
and confidently, and act in systems with self-awareness. In this project
based course, we will embrace complexity without being paralyzed by
it. Working on a real-world challenge related to social health and civic
fabric (e.g. political polarization, loneliness and social isolation) you will
practice identifying high-leverage entry points for change, rigorously
framing problems, and making process and product development
decisions by evaluating impact. The course draws from HCD, systems
thinking, strategic foresight, emotional intelligence, and agile team
operations to prepare you to be even more successful as a designer,
researcher, product manager, entrepreneur, or activist. If you tend to
be more theory oriented, this course will get you into action. If you¿re
quick to action, this course will give you a wider foundation for making a
positive impact. Prerequisite: Strongly recommend CS147, ME216A or a
d.school class on needfinding.

CS 190. Software Design Studio. 3-4 Units.
This course teaches the art of software design: how to decompose
large complex systems into classes that can be implemented and
maintained easily. Topics include the causes of complexity, modular
design, techniques for creating deep classes, minimizing the complexity
associated with exceptions, in-code documentation, and name selection.
The class involves significant system software implementation and uses
an iterative approach consisting of implementation, review, and revision.
The course is taught in a studio format with in-class discussions and
code reviews in addition to lectures. Prerequisite: CS 140 or equivalent.
Apply at: https://web.stanford.edu/class/cs190.

CS 191. Senior Project. 1-6 Unit.
Restricted to Computer Science students. Group or individual projects
under faculty direction. Register using instructor's section number. A
project can be either a significant software application or publishable
research. Software application projects include substantial programming
and modern user-interface technologies and are comparable in scale to
shareware programs or commercial applications. Research projects may
result in a paper publishable in an academic journal or presentable at a
conference. Public presentation of final application or research results
is required. Prerequisite: Completion of at least 135 units and consent of
instructor. Project proposal form is required before the beginning of the
quarter of enrollment: https://cs.stanford.edu/degrees/undergrad/Senior
%20Project%20Proposal.pdf.

CS 191W. Writing Intensive Senior Project. 3-6 Units.
Restricted to Computer Science students. Writing-intensive version
of CS191. Register using instructor's section number. Prerequisite:
Completion of at least 135 units and consent of instructor. Project
proposal form is required before the beginning of the quarter of
enrollment: https://cs.stanford.edu/degrees/undergrad/Senior
%20Project%20Proposal.pdf.
Same as: WIM

CS 192. Programming Service Project. 1-4 Unit.
Restricted to Computer Science students. Appropriate academic credit
(without financial support) is given for volunteer computer programming
work of public benefit and educational value. Register using the section
number associated with the instructor. Prerequisite: consent of instructor.

CS 193A. Android Programming. 3 Units.
Introduction to building applications for Android platform. Examines
key concepts of Android programming: tool chain, application life-cycle,
views, controls, intents, designing mobile UIs, networking, threading,
and more. Features weekly lectures and a series of small programming
projects. Phone not required, but a phone makes the projects more
engaging. Prerequisites: 106B or Java experience at 106B level.
Enrollment limited and application required.

Stanford Bulletin 2020-21

6 Computer Science (CS)

CS 193C. Client-Side Internet Technologies. 3 Units.
Client-side technologies used to create web sites such as Google maps
or Gmail. Includes HTML5, CSS, JavaScript, the Document Object Model
(DOM), and Ajax. Prerequisite: programming experience at the level of
CS106A.

CS 193P. iOS Application Development. 3 Units.
Build mobile applications using tools and APIs in iOS. Developing
applications for the iPhone and iPad requires integration of numerous
concepts including functional programming, object-oriented
programming, computer-human interfaces, graphics, animation, reactive
interfaces, Model-View-Intent (MVI) and Model-View-View-Model (MVVM)
design paradigms, object-oriented databases, networking, and interactive
performance considerations including multi-threading. This course
will require you to learn a new programming language (Swift) as well
as a new-to-iOS development environment, SwiftUI. Prerequisites: All
coursework (homework and final project) involves writing code, so
writing a lot of code should not be ¿new¿ to you (coding experience
in almost any language is valuable, but object-oriented (e.g. CS108)
and/or functional programming languages (e.g. CS43) are most highly
recommended). CS106A and B (or X) and CS107 (or equivalent) are hard
prerequisites. Any other courses that help to develop your maturity as a
programmer are also recommended.

CS 193Q. Introduction to Python Programming. 1 Unit.
CS193Q teaches basic Python programming with a similar end-condition
to CS106AP: strings, lists, numbers, dicts, loops, logic, functions, testings,
decomposition and style, and modules. CS193Q assumes knowledge
of some programming language, and proceeds by showing how each
common programming idea is expressed in Python. CS193Q moves very
quickly, meeting 3 times for 4 hours for a total of 12 hours which is a
mixture of lecture and lab time.

CS 193U. Video Game Development in C++ and Unreal Engine. 3 Units.
Hands-on game development in C++ using Unreal Engine 4, the game
engine that triple-A games like Fortnite, PUBG, and Gears of War are
all built on. Students will be introduced to the Unreal editor, game
frameworks, physics, AI, multiplayer and networking, UI, and profiling
and optimization. Project-based course where you build your own games
and gain a solid foundation in Unreal's architecture that will apply to any
future game projects. Pre-requisites: CS106B or CS106X required. CS107
and CS110 recommended.

CS 193X. Web Programming Fundamentals. 3 Units.
Introduction to full-stack web development with an emphasis on
fundamentals. Client-side topics include layout and rendering through
HTML and CSS, event-driven programming through JavaScript, and
single-threaded asynchronous programming techniques including
Promises. Focus on modern standardized APIs and best practices.
Server-side topics include the development of RESTful APIs, JSON
services, and basic server-side storage techniques. Covers desktop and
mobile web development. Prerequisite: 106B or equivalent.

CS 194. Software Project. 3 Units.
Design, specification, coding, and testing of a significant team
programming project under faculty supervision. Documentation includes
capture of project rationale, design and discussion of key performance
indicators, a weekly progress log and a software architecture diagram.
Public demonstration of the project at the end of the quarter. Preference
given to seniors. May be repeated for credit. Prerequisites: CS 110 and CS
161.

CS 194A. Android Programming Workshop. 1 Unit.
Learn basic, foundational techniques for developing Android mobile
applications and apply those toward building a single or multi page,
networked Android application.

CS 194H. User Interface Design Project. 3-4 Units.
Advanced methods for designing, prototyping, and evaluating user
interfaces to computing applications. Novel interface technology,
advanced interface design methods, and prototyping tools. Substantial,
quarter-long course project that will be presented in a public
presentation. Prerequisites: CS 147, or permission of instructor.

CS 194W. Software Project. 3 Units.
Restricted to Computer Science and Electrical Engineering
undergraduates. Writing-intensive version of CS194. Preference given to
seniors.
Same as: WIM

CS 195. Supervised Undergraduate Research. 3-4 Units.
Directed research under faculty supervision. Register using instructor's
section number. Students are required to submit a written report and give
a public presentation on their work. Prerequisite: consent of instructor.

CS 196. Computer Consulting. 2 Units.
Focus is on Macintosh and Windows operating system maintenance,
and troubleshooting through hardware and software foundation and
concepts. Topics include operating systems, networking, security,
troubleshooting methodology with emphasis on Stanford's computing
environment. Final project. Not a programming course.
Same as: VPTL 196

CS 197. Computer Science Research. 3-4 Units.
An onramp for students interested in breaking new ground in the
frontiers of computer science. Course format features faculty lectures
introducing the fundamentals of computer science research, alongside
special interest group meetings that provide mentorship and feedback
on a real research project. CURIS students enroll for 3 units and
prepare for summer research. All other students enroll for 4 units and
select a research area (AI, HCI, Systems, etc.) for a quarter-long team
programming project with a Ph.D. student mentor. Lecture topics include
reading technical papers, practicing oral communication and technical
writing skills, and independently formulating research questions.
Prerequisites: In both cases, enrollment is by application. CS106B is
required; CS107 is strongly recommended.

CS 198. Teaching Computer Science. 3-4 Units.
Students lead a discussion section of 106A while learning how to teach
a programming language at the introductory level. Focus is on teaching
skills, techniques, and course specifics. Application and interview
required; see http://cs198.stanford.edu.

CS 198B. Additional Topics in Teaching Computer Science. 1 Unit.
Students build on the teaching skills developed in CS198. Focus is
on techniques used to teach topics covered in CS106B. Prerequisite:
successful completion of CS198.

CS 199. Independent Work. 1-6 Unit.
Special study under faculty direction, usually leading to a written
report. Register using instructor's section number. Letter grade; if not
appropriate, enroll in CS199P. Prerequisite: consent of instructor.

CS 199P. Independent Work. 1-6 Unit.
Special study under faculty direction, usually leading to a written report.
Register using instructor's section number. CR/NC only, if not appropriate,
enroll in CS199. Prerequisite: consent of instructor.

CS 1C. Introduction to Computing at Stanford. 1 Unit.
For those who want to learn more about Stanford's computing
environment. Topics include: computer maintenance and security,
computing resources, Internet privacy, and copyright law. One-hour
lecture/demonstration in dormitory clusters prepared and administered
weekly by Student Technology. Final project. Not a programming course.
Same as: VPTL 1

Stanford Bulletin 2020-21

Computer Science (CS) 7

CS 1U. Practical Unix. 1 Unit.
A practical introduction to using the Unix operating system with a
focus on Linux command line skills. Class will consist of video tutorials
and weekly hands-on lab sections. Topics include: grep and regular
expressions, ZSH, Vim and Emacs, basic and advanced GDB features,
permissions, working with the file system, revision control, Unix
utilities, environment customization, and using Python for shell scripts.
Topics may be added, given sufficient interest. Course website: http://
cs1u.stanford.edu.

CS 202. Law for Computer Science Professionals. 1 Unit.
Businesses are built on ideas. Today¿s successful companies are
those that most effectively generate, protect, and exploit new and
valuable business ideas. Over the past 40 years, ¿intellectual capital¿ has
emerged as the leading assets class. Ocean Tomo® estimates that
over 80% of the market value of S&P 500 corporations now stems from
¿intangible¿ assets, which consist largely of intellectual property (IP)
assets (e.g., the company and product names, logos and designs;
patentable inventions; proprietary software and databases, and other
proprietary product, manufacturing and marketing information). It is
therefore vital for entrepreneurs and other business professionals to
have a basic understanding of IP and how it is procured, protected, and
exploited. This course provides an overview of the many and varied IP
issues that students will confront during their careers. It is intended
to be both informative and fun. Classes will cover the basics of patent,
trademark, copyright, and trade secret law. Current issues in these
areas will be covered, including patent protection for software and
business methods, copyrightability of computer programs and APIs,
issues relating to artificial intelligence, and the evolving protection for
trademarks and trade secrets. Emerging issues concerning the federal
Computer Fraud & Abuse Act (CFAA) and ¿hacking¿ will be covered, as
will employment issues, including employee proprietary information
and invention assignment agreements, work made for hire agreements,
confidentiality agreements, non-compete agreements and other potential
post-employment restrictions. Recent notable lawsuits will be discussed,
including Apple v. Samsung (patents), Alice Corp. v. CLS Bank (software
and business method patents), Oracle v. Google (software/APIs), Waymo
v. Uber (civil and criminal trade secret theft), and hiQ v. LinkedIn (CFAA).
IP law evolves constantly and new headline cases that arise during
the term are added to the class discussion. Guest lectures typically
include experts on open source software; legal and practical issues
confronted by business founders; and, consulting and testifying as an
expert in IP litigation. Although many of the issues discussed will involve
technology disputes, the course also covers IP issues relating to art,
music, photography, and literature. Classes are presented in an open
discussion format and they are designed to be enjoyed by students of all
backgrounds and areas of expertise.

CS 203. Cybersecurity: A Legal and Technical Perspective. 2 Units.
(Formerly IPS 251) This class will use the case method to teach basic
computer, network, and information security from technology, law,
policy, and business perspectives. Using real world topics, we will
study the technical, legal, policy, and business aspects of an incident
or issue and its potential solutions. The case studies will be organized
around the following topics: vulnerability disclosure, state sponsored
sabotage, corporate and government espionage, credit card theft, theft
of embarrassing personal data, phishing and social engineering attacks,
denial of service attacks, attacks on weak session management and
URLs, security risks and benefits of cloud data storage, wiretapping
on the Internet, and digital forensics. Students taking the class will
learn about the techniques attackers use, applicable legal prohibitions,
rights, and remedies, the policy context, and strategies in law, policy and
business for managing risk. Grades will be based on class participation,
two reflection papers, and a final exam. Special Instructions: This
class is limited to 65 students, with an effort made to have students
from Stanford Law School (30 students will be selected by lottery) and
students from Computer Science (30 students) and International Policy
Studies (5 students). Elements used in grading: Class Participation (20%),
Written Assignments (40%), Final Exam (40%). Cross-listed with the Law
School (Law 4004) and International Policy Studies (IPS course number
TBD).
Same as: INTLPOL 251

CS 204. Computational Law. 2-3 Units.
Computational Law is an innovative approach to legal informatics
concerned with the representation of regulations in computable form.
From a practical perspective, Computational Law is important as
the basis for computer systems capable of performing useful legal
calculations, such as compliance checking, legal planning, and regulatory
analysis. In this course, we look at the theory of Computational Law, we
review relevant technology and applications, we discuss the prospects
and problems of Computational Law, and we examine its philosophical
and legal implications. Work in the course consists of reading, class
discussion, and practical exercises.

CS 205L. Continuous Mathematical Methods with an Emphasis on
Machine Learning. 3 Units.
A survey of numerical approaches to the continuous mathematics used
throughout computer science with an emphasis on machine and deep
learning. Although motivated from the standpoint of machine learning,
the course will focus on the underlying mathematical methods including
computational linear algebra and optimization, as well as special topics
such as automatic differentiation via backward propagation, momentum
methods from ordinary differential equations, CNNs, RNNs, etc. Written
homework assignments focus on various concepts; additionally, students
choose either a take-home final exam or a series of programming
assignments geared towards neural network creation, training, and
inference. (Replaces CS205A, and satisfies all similar requirements.)
Prerequisites: Math 51; Math104 or MATH113 or equivalent or comfort
with the associated material.

CS 206. Exploring Computational Journalism. 3 Units.
This project-based course will explore the field of computational
journalism, including the use of Data Science, Info Visualization, AI,
and emerging technologies to help journalists discover and tell stories,
understand their audience, advance free speech, and build trust. Please
apply by Jan 15, 2021 at ecj.stanford.edu.
Same as: COMM 281

CS 208E. Great Ideas in Computer Science. 3 Units.
Great Ideas in Computer Science Covers the intellectual tradition of
computer science emphasizing ideas that reflect the most important
milestones in the history of the discipline. Topics include programming
and problem solving; implementing computation in hardware; algorithmic
efficiency; the theoretical limits of computation; cryptography and
security; computer networks; machine learning; and the philosophy
behind artificial intelligence. Readings will include classic papers along
with additional explanatory material.

Stanford Bulletin 2020-21

8 Computer Science (CS)

CS 209. Law, Order, & Algorithms. 3 Units.
Human decision making is increasingly being displaced by predictive
algorithms. Judges sentence defendants based on statistical risk scores;
regulators take enforcement actions based on predicted violations;
advertisers target materials based on demographic attributes; and
employers evaluate applicants and employees based on machine-
learned models. One concern with the rise of such algorithmic decision
making is that it may replicate or exacerbate human bias. This course
surveys the legal and ethical principles for assessing the equity of
algorithms, describes statistical techniques for designing fair systems,
and considers how anti-discrimination law and the design of algorithms
may need to evolve to account for machine bias. Concepts will be
developed in part through guided in-class coding exercises. Admission
is by consent of instructor and is limited to 20 students. To enroll
in the class, please complete the course application by March 20,
available at: https://5harad.com/mse330/. Grading is based on response
papers, class participation, and a final project. Prerequisite: CS 106A or
equivalent knowledge of coding.
Same as: CSRE 230, MS&E 330, SOC 279

CS 210A. Software Project Experience with Corporate Partners. 3-4
Units.
Two-quarter project course. Focus is on real-world software development.
Corporate partners seed projects with loosely defined challenges from
their R&D labs; students innovate to build their own compelling software
solutions. Student teams are treated as start-up companies with a
budget and a technical advisory board comprised of instructional staff
and corporate liaisons. Teams will typically travel to the corporate
headquarters of their collaborating partner, meaning some teams will
travel internationally. Open loft classroom format such as found in
Silicon Valley software companies. Exposure to: current practices in
software engineering; techniques for stimulating innovation; significant
development experience with creative freedoms; working in groups; real-
world software engineering challenges; public presentation of technical
work; creating written descriptions of technical work. Prerequisites: CS
109 and 110.

CS 210B. Software Project Experience with Corporate Partners. 3-4
Units.
Continuation of CS210A. Focus is on real-world software development.
Corporate partners seed projects with loosely defined challenges from
their R&D labs; students innovate to build their own compelling software
solutions. Student teams are treated as start-up companies with a
budget and a technical advisory board comprised of the instructional
staff and corporate liaisons. Teams will typically travel to the corporate
headquarters of their collaborating partner, meaning some teams will
travel internationally. Open loft classroom format such as found in
Silicon Valley software companies. Exposure to: current practices in
software engineering; techniques for stimulating innovation; significant
development experience with creative freedoms; working in groups; real
world software engineering challenges; public presentation of technical
work; creating written descriptions of technical work. Prerequisites: CS
210A.

CS 213. Creating Great VR: From Ideation to Monetization. 1 Unit.
Covering everything from VR fundamentals to futurecasting to launch
management, this course will expose you to best practices and guidance
from VR leaders that helps positions you to build great VR experiences.

CS 217. Hardware Accelerators for Machine Learning. 3-4 Units.
This course provides in-depth coverage of the architectural techniques
used to design accelerators for training and inference in machine learning
systems. This course will cover classical ML algorithms such as linear
regression and support vector machines as well as DNN models such
as convolutional neural nets, and recurrent neural nets. We will consider
both training and inference for these models and discuss the impact of
parameters such as batch size, precision, sparsity and compression on
the accuracy of these models. We will cover the design of accelerators
for ML model inference and training. Students will become familiar with
hardware implementation techniques for using parallelism, locality,
and low precision to implement the core computational kernels used in
ML. To design energy-efficient accelerators, students will develop the
intuition to make trade-offs between ML model parameters and hardware
implementation techniques. Students will read recent research papers
and complete a design project. Prerequisites: CS 149 or EE 180. CS 229 is
ideal, but not required.

CS 21SI. AI for Social Good. 2 Units.
Students will learn about and apply cutting-edge artificial intelligence
techniques to real-world social good spaces (such as healthcare,
government, education, and environment). Taught jointly by CS+Social
Good and the Stanford AI Group, the aim of the class is to empower
students to apply these techniques outside of the classroom. The class
will focus on techniques from machine learning and deep learning,
including regression, support vector machines (SVMs), neural networks,
convolutional neural networks (CNNs), and recurrent neural networks
(RNNs). The course alternates between lectures on machine learning
theory and discussions with invited speakers, who will challenge students
to apply techniques in their social good domains. Students complete
weekly coding assignments reinforcing machine learning concepts
and applications. Prerequisites: programming experience at the level
of CS107, mathematical fluency at the level of CS103, comfort with
probability at the level of CS109 (or equivalent). Application required for
enrollment.

CS 221. Artificial Intelligence: Principles and Techniques. 3-4 Units.
Artificial intelligence (AI) has had a huge impact in many areas, including
medical diagnosis, speech recognition, robotics, web search, advertising,
and scheduling. This course focuses on the foundational concepts that
drive these applications. In short, AI is the mathematics of making good
decisions given incomplete information (hence the need for probability)
and limited computation (hence the need for algorithms). Specific
topics include search, constraint satisfaction, game playing,n Markov
decision processes, graphical models, machine learning, and logic.
Prerequisites: CS 103 or CS 103B/X, CS 106B or CS 106X, CS 109, and CS
161 (algorithms, probability, and object-oriented programming in Python).
We highly recommend comfort with these concepts before taking the
course, as we will be building on them with little review.

CS 223A. Introduction to Robotics. 3 Units.
Robotics foundations in modeling, design, planning, and control. Class
covers relevant results from geometry, kinematics, statics, dynamics,
motion planning, and control, providing the basic methodologies and
tools in robotics research and applications. Concepts and models are
illustrated through physical robot platforms, interactive robot simulations,
and video segments relevant to historical research developments or to
emerging application areas in the field. Recommended: matrix algebra.
Same as: ME 320

Stanford Bulletin 2020-21

Computer Science (CS) 9

CS 224N. Natural Language Processing with Deep Learning. 3-4 Units.
Methods for processing human language information and the underlying
computational properties of natural languages. Focus on deep learning
approaches: understanding, implementing, training, debugging,
visualizing, and extending neural network models for a variety of
language understanding tasks. Exploration of natural language
tasks ranging from simple word level and syntactic processing to
coreference, question answering, and machine translation. Examination
of representative papers and systems and completion of a final project
applying a complex neural network model to a large-scale NLP problem.
Prerequisites: calculus and linear algebra; CS124, CS221, or CS229.
Same as: LINGUIST 284, SYMSYS 195N

CS 224S. Spoken Language Processing. 2-4 Units.
Introduction to spoken language technology with an emphasis on
dialogue and conversational systems. Deep learning and other methods
for automatic speech recognition, speech synthesis, affect detection,
dialogue management, and applications to digital assistants and spoken
language understanding systems. Prerequisites: CS124, CS221, CS224N,
or CS229.
Same as: LINGUIST 285

CS 224U. Natural Language Understanding. 3-4 Units.
Project-oriented class focused on developing systems and algorithms for
robust machine understanding of human language. Draws on theoretical
concepts from linguistics, natural language processing, and machine
learning. Topics include lexical semantics, distributed representations of
meaning, relation extraction, semantic parsing, sentiment analysis, and
dialogue agents, with special lectures on developing projects, presenting
research results, and making connections with industry. Prerequisites:
one of LINGUIST 180/280, CS 124, CS 224N, or CS 224S.
Same as: LINGUIST 188, LINGUIST 288, SYMSYS 195U

CS 224W. Machine Learning with Graphs. 3-4 Units.
Many complex data can be represented as a graph of relationships
between objects. Such networks are a fundamental tool for modeling
complex social, technological, and biological systems. This course
focuses on the computational, algorithmic, and modeling challenges
specific to the analysis of massive graphs. By means of studying the
underlying graph structure and its features, students are introduced to
machine learning techniques and data mining tools apt to reveal insights
on a variety of networks. Topics include: representation learning and
Graph Neural Networks; algorithms for the World Wide Web; reasoning
over Knowledge Graphs; influence maximization; disease outbreak
detection, social network analysis. Prerequisites: CS109, any introductory
course in Machine Learning.

CS 225A. Experimental Robotics. 3 Units.
Hands-on laboratory course experience in robotic manipulation. Topics
include robot kinematics, dynamics, control, compliance, sensor-based
collision avoidance, and human-robot interfaces. Second half of class
is devoted to final projects using various robotic platforms to build and
demonstrate new robot task capabilities. Previous projects include the
development of autonomous robot behaviors of drawing, painting, playing
air hocket, yoyo, basketball, ping-pong or xylophone. Prerequisites: 223A
or equivalent.

CS 227B. General Game Playing. 3 Units.
A general game playing system accepts a formal description of a game
to play it without human intervention or algorithms designed for specific
games. Hands-on introduction to these systems and artificial intelligence
techniques such as knowledge representation, reasoning, learning,
and rational behavior. Students create GGP systems to compete with
each other and in external competitions. Prerequisite: programming
experience. Recommended: 103 or equivalent.

CS 228. Probabilistic Graphical Models: Principles and Techniques. 3-4
Units.
Probabilistic graphical modeling languages for representing complex
domains, algorithms for reasoning using these representations, and
learning these representations from data. Topics include: Bayesian and
Markov networks, extensions to temporal modeling such as hidden
Markov models and dynamic Bayesian networks, exact and approximate
probabilistic inference algorithms, and methods for learning models from
data. Also included are sample applications to various domains including
speech recognition, biological modeling and discovery, medical diagnosis,
message encoding, vision, and robot motion planning. Prerequisites:
basic probability theory and algorithm design and analysis.

CS 229. Machine Learning. 3-4 Units.
Topics: statistical pattern recognition, linear and non-linear regression,
non-parametric methods, exponential family, GLMs, support vector
machines, kernel methods, deep learning, model/feature selection,
learning theory, ML advice, clustering, density estimation, EM,
dimensionality reduction, ICA, PCA, reinforcement learning and adaptive
control, Markov decision processes, approximate dynamic programming,
and policy search. Prerequisites: knowledge of basic computer science
principles and skills at a level sufficient to write a reasonably non-trivial
computer program in Python/numpy, familiarity with probability theory to
the equivalency of CS109 or STATS116, and familiarity with multivariable
calculus and linear algebra to the equivalency of MATH51.
Same as: STATS 229

CS 229M. Machine Learning Theory. 3 Units.
How do we use mathematical thinking to design better machine learning
methods? This course focuses on developing mathematical tools
for answering these questions. This course will cover fundamental
concepts and principled algorithms in machine learning. We have a
special focus on modern large-scale non-linear models such as matrix
factorization models and deep neural networks. In particular, we will
cover concepts and phenomenon such as uniform convergence, double
descent phenomenon, implicit regularization, and problems such as
matrix completion, bandits, and online learning (and generally sequential
decision making under uncertainty). Prerequisites: linear algebra (MATH
51 or CS 205), probability theory (STATS 116, MATH 151 or CS 109), and
machine learning (CS 229, STATS 229, or STATS 315A).
Same as: STATS 214

CS 22A. The Social & Economic Impact of Artificial Intelligence. 1 Unit.
Recent advances in computing may place us at the threshold of a
unique turning point in human history. Soon we are likely to entrust
management of our environment, economy, security, infrastructure, food
production, healthcare, and to a large degree even our personal activities,
to artificially intelligent computer systems. The prospect of "turning over
the keys" to increasingly autonomous systems raises many complex
and troubling questions. How will society respond as versatile robots
and machine-learning systems displace an ever-expanding spectrum
of blue- and white-collar workers? Will the benefits of this technological
revolution be broadly distributed or accrue to a lucky few? How can
we ensure that these systems are free of algorithmic bias and respect
human ethical principles? What role will they play in our system of justice
and the practice of law? How will they be used or abused in democratic
societies and autocratic regimes? Will they alter the geopolitical balance
of power, and change the nature of warfare? The goal of CS22a is to equip
students with the intellectual tools, ethical foundation, and psychological
framework to successfully navigate the coming age of intelligent
machines.
Same as: INTLPOL 200

Stanford Bulletin 2020-21

10 Computer Science (CS)

CS 230. Deep Learning. 3-4 Units.
Deep Learning is one of the most highly sought after skills in AI. We will
help you become good at Deep Learning. In this course, you will learn the
foundations of Deep Learning, understand how to build neural networks,
and learn how to lead successful machine learning projects. You will
learn about Convolutional networks, RNNs, LSTM, Adam, Dropout,
BatchNorm, Xavier/He initialization, and more. You will work on case
studies from healthcare, autonomous driving, sign language reading,
music generation, and natural language processing. You will master
not only the theory, but also see how it is applied in industry. You will
practice all these ideas in Python and in TensorFlow, which we will teach.
AI is transforming multiple industries. After this course, you will likely
find creative ways to apply it to your work. This class is taught in the
flipped-classroom format. You will watch videos and complete in-depth
programming assignments and online quizzes at home, then come in
to class for advanced discussions and work on projects. This class will
culminate in an open-ended final project, which the teaching team will
help you on. Prerequisites: Familiarity with programming in Python and
Linear Algebra (matrix / vector multiplications). CS 229 may be taken
concurrently.

CS 231A. Computer Vision: From 3D Reconstruction to Recognition. 3-4
Units.
(Formerly 223B) An introduction to the concepts and applications in
computer vision. Topics include: cameras and projection models, low-
level image processing methods such as filtering and edge detection;
mid-level vision topics such as segmentation and clustering; shape
reconstruction from stereo, as well as high-level vision tasks such
as object recognition, scene recognition, face detection and human
motion categorization. Prerequisites: linear algebra, basic probability and
statistics.

CS 231C. Computer Vision and Image Analysis of Art. 3 Units.
This course presents the application of rigorous image processing,
computer vision, machine learning, computer graphics and artificial
intelligence techniques to problems in the history and interpretation of
fine art paintings, drawings, murals and other two-dimensional works,
including abstract art. The course focuses on the aspects of these
problems that are unlike those addressed widely elsewhere in computer
image analysis applied to physics-constrained images in photographs,
videos, and medical images, such as the analysis of brushstrokes and
marks, medium, inferring artists¿ working methods, compositional
principles, stylometry (quantification of style), the tracing of artistic
influence, and art attribution and authentication. The course revisits
classic problems, such as image-based object recognition, but in highly
non-realistic, stylized artworks. Recommended: One of CS 131 or EE
168 or equivalent; ARTHIST 1B. Prerequisites: Programming proficiency
in at least one of C, C++, Python, Matlab or Mathematica and tools/
frameworks such as OpenCV or Matlab's Image Processing toolbox.

CS 231N. Convolutional Neural Networks for Visual Recognition. 3-4
Units.
Computer Vision has become ubiquitous in our society, with applications
in search, image understanding, apps, mapping, medicine, drones,
and self-driving cars. Core to many of these applications are visual
recognition tasks such as image classification and object detection.
Recent developments in neural network approaches have greatly
advanced the performance of these state-of-the-art visual recognition
systems. This course is a deep dive into details of neural-network based
deep learning methods for computer vision. During this course, students
will learn to implement, train and debug their own neural networks and
gain a detailed understanding of cutting-edge research in computer
vision. We will cover learning algorithms, neural network architectures,
and practical engineering tricks for training and fine-tuning networks for
visual recognition tasks. Prerequisites: Proficiency in Python; CS131 and
CS229 or equivalents; MATH21 or equivalent, linear algebra.

CS 232. Digital Image Processing. 3 Units.
Image sampling and quantization color, point operations, segmentation,
morphological image processing, linear image filtering and correlation,
image transforms, eigenimages, multiresolution image processing, noise
reduction and restoration, feature extraction and recognition tasks, image
registration. Emphasis is on the general principles of image processing.
Students learn to apply material by implementing and investigating
image processing algorithms in Matlab and optionally on Android mobile
devices. Term project. Recommended: EE261, EE278.
Same as: EE 368

CS 233. Geometric and Topological Data Analysis. 3 Units.
Mathematical and computational tools for the analysis of data with
geometric content, such images, videos, 3D scans, GPS traces -- as
well as for other data embedded into geometric spaces. Global and
local geometry descriptors allowing for various kinds of invariances.
The rudiments of computational topology and persistent homology on
sampled spaces. Clustering and other unsupervised techniques. Spectral
methods for graph data. Linear and non-linear dimensionality reduction
techniques. Alignment, matching, and map computation between
geometric data sets. Function spaces and functional maps. Networks of
data sets and joint analysis for segmentation and labeling. Deep learning
on irregular geometric data. Prerequisites: discrete algorithms at the level
of CS161; linear algebra at the level of Math51 or CME103.
Same as: CME 251

CS 234. Reinforcement Learning. 3 Units.
To realize the dreams and impact of AI requires autonomous systems
that learn to make good decisions. Reinforcement learning is one
powerful paradigm for doing so, and it is relevant to an enormous range
of tasks, including robotics, game playing, consumer modeling and
healthcare. This class will briefly cover background on Markov decision
processes and reinforcement learning, before focusing on some of
the central problems, including scaling up to large domains and the
exploration challenge. One key tool for tackling complex RL domains
is deep learning and this class will include at least one homework on
deep reinforcement learning. Prerequisites: proficiency in python, CS
229 or equivalents or permission of the instructor; linear algebra, basic
probability.

CS 235. Computational Methods for Biomedical Image Analysis and
Interpretation. 3-4 Units.
The latest biological and medical imaging modalities and their
applications in research and medicine. Focus is on computational
analytic and interpretive approaches to optimize extraction and use
of biological and clinical imaging data for diagnostic and therapeutic
translational medical applications. Topics include major image
databases, fundamental methods in image processing and quantitative
extraction of image features, structured recording of image information
including semantic features and ontologies, indexing, search and
content-based image retrieval. Case studies include linking image data
to genomic, phenotypic and clinical data, developing representations
of image phenotypes for use in medical decision support and research
applications and the role that biomedical imaging informatics plays in
new questions in biomedical science. Includes a project. Enrollment for
3 units requires instructor consent. Prerequisites: programming ability at
the level of CS 106A, familiarity with statistics, basic biology. Knowledge
of Matlab or Python highly recommended.
Same as: BIOMEDIN 260, RAD 260

Stanford Bulletin 2020-21

Computer Science (CS) 11

CS 236. Deep Generative Models. 3 Units.
Generative models are widely used in many subfields of AI and Machine
Learning. Recent advances in parameterizing these models using neural
networks, combined with progress in stochastic optimization methods,
have enabled scalable modeling of complex, high-dimensional data
including images, text, and speech. In this course, we will study the
probabilistic foundations and learning algorithms for deep generative
models, including Variational Autoencoders (VAE), Generative Adversarial
Networks (GAN), and flow models. The course will also discuss
application areas that have benefitted from deep generative models,
including computer vision, speech and natural language processing, and
reinforcement learning. Prerequisites: Basic knowledge about machine
learning from at least one of CS 221, 228, 229 or 230. Students will
work with computational and mathematical models and should have
a basic knowledge of probabilities and calculus. Proficiency in some
programming language, preferably Python, required.

CS 236G. Generative Adversarial Networks. 3 Units.
Generative Adversarial Networks (GANs) have rapidly emerged as the
state-of-the-art technique in realistic image generation. This course
presents theoretical intuition and practical knowledge on GANs,
from their simplest to their state-of-the-art forms. Their benefits and
applications span realistic image editing that is omnipresent in popular
app filters, enabling tumor classification under low data schemes
in medicine, and visualizing realistic scenarios of climate change
destruction. This course also examines key challenges of GANs today,
including reliable evaluation, inherent biases, and training stability. After
this course, students should be familiar with GANs and the broader
generative models and machine learning contexts in which these models
are situated. Prerequisites: linear algebra, statistics, CS106B, plus a
graduate-level AI course such as: CS230, CS229 (or CS129), or CS221.

CS 237A. Principles of Robot Autonomy I. 3-5 Units.
Basic principles for endowing mobile autonomous robots with perception,
planning, and decision-making capabilities. Algorithmic approaches
for robot perception, localization, and simultaneous localization and
mapping; control of non-linear systems, learning-based control, and
robot motion planning; introduction to methodologies for reasoning
under uncertainty, e.g., (partially observable) Markov decision processes.
Extensive use of the Robot Operating System (ROS) for demonstrations
and hands-on activities. Prerequisites: CS 106A or equivalent, CME 100 or
equivalent (for linear algebra), and CME 106 or equivalent (for probability
theory).
Same as: AA 174A, AA 274A, EE 260A

CS 237B. Principles of Robot Autonomy II. 3-4 Units.
This course teaches advanced principles for endowing mobile
autonomous robots with capabilities to autonomously learn new skills
and to physically interact with the environment and with humans. It also
provides an overview of different robot system architectures. Concepts
that will be covered in the course are: Reinforcement Learning and
its relationship to optimal control, contact and dynamics models for
prehensile and non-prehensile robot manipulation, imitation learning and
human intent inference, as well as different system architectures and
their verification. Students will earn the theoretical foundations for these
concepts and implement them on mobile manipulation platforms. In
homeworks, the Robot Operating System (ROS) will be used extensively
for demonstrations and hands-on activities. Prerequisites: CS106A
or equivalent, CME 100 or equivalent (for linear algebra), CME 106 or
equivalent (for probability theory), and AA 171/274.
Same as: AA 174B, AA 274B, EE 260B

CS 238. Decision Making under Uncertainty. 3-4 Units.
This course is designed to increase awareness and appreciation for
why uncertainty matters, particularly for aerospace applications.
Introduces decision making under uncertainty from a computational
perspective and provides an overview of the necessary tools for building
autonomous and decision-support systems. Following an introduction
to probabilistic models and decision theory, the course will cover
computational methods for solving decision problems with stochastic
dynamics, model uncertainty, and imperfect state information. Topics
include: Bayesian networks, influence diagrams, dynamic programming,
reinforcement learning, and partially observable Markov decision
processes. Applications cover: air traffic control, aviation surveillance
systems, autonomous vehicles, and robotic planetary exploration.
Prerequisites: basic probability and fluency in a high-level programming
language.
Same as: AA 228

CS 239. Advanced Topics in Sequential Decision Making. 3-4 Units.
Survey of recent research advances in intelligent decision making for
dynamic environments from a computational perspective. Efficient
algorithms for single and multiagent planning in situations where a
model of the environment may or may not be known. Partially observable
Markov decision processes, approximate dynamic programming, and
reinforcement learning. New approaches for overcoming challenges
in generalization from experience, exploration of the environment, and
model representation so that these methods can scale to real problems in
a variety of domains including aerospace, air traffic control, and robotics.
Students are expected to produce an original research paper on a relevant
topic. Prerequisites: AA 228/CS 238 or CS 221.
Same as: AA 229

CS 24. Minds and Machines. 4 Units.
(Formerly SYMSYS 100). An overview of the interdisciplinary study of
cognition, information, communication, and language, with an emphasis
on foundational issues: What are minds? What is computation? What
are rationality and intelligence? Can we predict human behavior?
Can computers be truly intelligent? How do people and technology
interact, and how might they do so in the future? Lectures focus on
how the methods of philosophy, mathematics, empirical research,
and computational modeling are used to study minds and machines.
Students must take this course before being approved to declare
Symbolic Systems as a major. All students interested in studying
Symbolic Systems are urged to take this course early in their student
careers. The course material and presentation will be at an introductory
level, without prerequisites. If you have any questions about the course,
please email symsys1staff@gmail.com.
Same as: LINGUIST 35, PHIL 99, PSYCH 35, SYMSYS 1, SYMSYS 200

CS 240. Advanced Topics in Operating Systems. 3 Units.
Recent research. Classic and new papers. Topics: virtual memory
management, synchronization and communication, file systems,
protection and security, operating system extension techniques, fault
tolerance, and the history and experience of systems programming.
Prerequisite: 140 or equivalent.

CS 240LX. Advanced Systems Laboratory, Accelerated. 3 Units.
This is an implementation-heavy, lab-based class that covers similar
topics as CS240, but by writing code versus discussing papers. Our code
will run "bare-metal" (without an operating system) on the widely-used
ARM-based raspberry pi. Bare-metal lets us do interesting tricks without
constantly fighting a lumbering, general-purpose OS that cannot get out
of its own way. We will do ten projects, one per week, where each project
covers two labs of (at a minimum) several hours each and a non-trivial
amount of outside work. The workload is significant, but I will aim to not
waste your time. Prerequisite: CS140E or instructor permission.

Stanford Bulletin 2020-21

12 Computer Science (CS)

CS 241. Embedded Systems Workshop. 3 Units.
Project-centric building hardware and software for embedded computing
systems. Students work on an existing project of their own or join one
of these projects. Syllabus topics will be determined by the needs of the
enrolled students and projects. Examples of topics include: interrupts
and concurrent programming, deterministic timing and synchronization,
state-based programming models, filters, frequency response, and high-
frequency signals, low power operation, system and PCB design, security,
and networked communication. Prerequisite: CS107 (or equivalent).
Same as: EE 285

CS 242. Programming Languages. 3-4 Units.
This course explores models of computation, both old, like functional
programming with the lambda calculus (circa 1930), and new, like
memory-safe systems programming with Rust (circa 2010). Topics
include type systems (polymorphism, algebraic data types, static
vs. dynamic), control flow (exceptions, continuations), concurrency/
parallelism, metaprogramming, and the semantic gap between
computational models and modern hardware. The study of programming
languages is equal parts systems and theory, looking at how a rigorous
understanding of the syntax, structure, and semantics of computation
enables formal reasoning about the behavior and properties of complex
real-world systems. In light of today's Cambrian explosion of new
programming languages, this course also seeks to provide a conceptual
clarity on how to compare and contrast the multitude of programming
languages, models, and paradigms in the modern programming
landscape. Prerequisites: 103, 110.

CS 243. Program Analysis and Optimizations. 3-4 Units.
Program analysis techniques used in compilers and software
development tools to improve productivity, reliability, and security. The
methodology of applying mathematical abstractions such as graphs,
fixpoint computations, binary decision diagrams in writing complex
software, using compilers as an example. Topics include data flow
analysis, instruction scheduling, register allocation, parallelism, data
locality, interprocedural analysis, and garbage collection. Prerequisites:
103 or 103B, and 107.

CS 244. Advanced Topics in Networking. 3-4 Units.
Classic papers, new ideas, and research papers in networking.
Architectural principles: why the Internet was designed this way?
Congestion control. Wireless and mobility; software-defined networks
(SDN) and network virtualization; content distribution networks; packet
switching; data-center networks. Prerequisite: 144 or equivalent.

CS 244B. Distributed Systems. 3 Units.
Distributed operating systems and applications issues, emphasizing
high-level protocols and distributed state sharing as the key technologies.
Topics: distributed shared memory, object-oriented distributed system
design, distributed directory services, atomic transactions and time
synchronization, application-sufficient consistency, file access, process
scheduling, process migration, and storage/communication abstractions
on distribution, scale, robustness in the face of failure, and security.
Prerequisites: CS 144.

CS 245. Principles of Data-Intensive Systems. 3 Units.
Most important computer applications have to reliably manage and
manipulate datasets. This course covers the architecture of modern
data storage and processing systems, including relational databases,
cluster computing frameworks, streaming systems and machine learning
systems. Topics include storage management, query optimization,
transactions, concurrency, fault recovery, and parallel processing, with
a focus on the key design ideas shared across many types of data-
intensive systems. Prerequisites: CS 145, 161.

CS 246. Mining Massive Data Sets. 3-4 Units.
The availability of massive datasets is revolutionizing science and
industry. This course discusses data mining and machine learning
algorithms for analyzing very large amounts of data. Topics include:
Big data systems (Hadoop, Spark); Link Analysis (PageRank, spam
detection); Similarity search (locality-sensitive hashing, shingling,
min-hashing); Stream data processing; Recommender Systems;
Analysis of social-network graphs; Association rules; Dimensionality
reduction (UV, SVD, and CUR decompositions); Algorithms for large-
scale mining (clustering, nearest-neighbor search); Large-scale machine
learning (decision tree ensembles); Multi-armed bandit; Computational
advertising. Prerequisites: At least one of CS107 or CS145.

CS 246H. Mining Massive Data Sets Hadoop Lab. 1 Unit.
Supplement to CS 246 providing additional material on the Apache
Hadoop family of technologies. Students will learn how to implement
data mining algorithms using Hadoop and Apache Spark, how to
implement and debug complex data mining and data transformations,
and how to use two of the most popular big data SQL tools. Topics: data
mining, machine learning, data ingest, and data transformations using
Hadoop, Spark, Apache Impala, Apache Hive, Apache Kafka, Apache
Sqoop, Apache Flume, Apache Avro, and Apache Parquet. Prerequisite:
CS 107 or equivalent.

CS 247A. Design for Artificial Intelligence. 3-4 Units.
A project-based course that builds on the introduction to design in CS147
by focusing on advanced methods and tools for research, prototyping,
and user interface design. Studio based format with intensive coaching
and iteration to prepare students for tackling real world design problems.
This course takes place entirely in studios; you must plan on attending
every studio to take this class. The focus of CS247A is design for
human-centered artificial intelligence experiences. What does it mean
to design for AI? What is HAI? How do you create responsible, ethical,
human centered experiences? Let us explore what AI actually is and the
constraints, opportunities and specialized processes necessary to create
AI systems that work effectively for the humans involved. Prerequisites:
CS147 or equivalent background in design thinking.
Same as: SYMSYS 195A

CS 247B. Design for Behavior Change. 3-4 Units.
Over the last decade, tech companies have invested in shaping user
behavior, sometimes for altruistic reasons like helping people change
bad habits into good ones, and sometimes for financial reasons such
as increasing engagement. In this project-based hands-on course,
students explore the design of systems, information and interface for
human use. We will model the flow of interactions, data and context,
and crafting a design that is useful, appropriate and robust. Students
will design and prototype utility apps or games as a response to the
challenges presented. We will also examine the ethical consequences
of design decisions and explore current issues arising from unintended
consequences. Prerequisite: CS147 or equivalent.
Same as: SYMSYS 195B

CS 247G. Introduction to Game Design. 3-4 Units.
A project-based course that builds on the introduction to design in CS147
by focusing on advanced methods and tools for research, prototyping,
and user interface design. Studio based format with intensive coaching
and iteration to prepare students for tackling real world design problems.
This course takes place entirely in studios; please plan on attending
every studio to take this class. nThe focus of CS247g is an introduction
to theory and practice of the design of games. We will make digital and
paper games, do rapid iteration and run user research studies appropriate
to game design. This class has multiple short projects, allowing us to
cover a variety of genres, from narrative to pure strategy. Prerequisites:
147 or equivalent background.
Same as: SYMSYS 195G

Stanford Bulletin 2020-21

Computer Science (CS) 13

CS 247I. Design for Understanding. 3-4 Units.
Complex problems require sophisticated approaches. In this project-
based hands-on course, students explore the design of systems,
information and interface for human use. We will model the flow of
interactions, data and context, and crafting a design that is useful,
appropriate and robust. Students will create utility apps or games as a
response to the challenges presented. We will also examine the ethical
consequences of design decisions and explore current issues arising
from unintended consequences. Prerequisite: CS 147 or equivalent.

CS 247S. Service Design. 3-4 Units.
A project-based course that builds on the introduction to design in CS147
by focusing on advanced methods and tools for research, prototyping,
and user interface design. Studio based format with intensive coaching
and iteration to prepare students for tackling real world design problems.
This course takes place entirely in studios; you must plan on attending
every studio to take this class. The focus of CS247S is Service Design.
In this course we will be looking at experiences that address the needs
of multiple types of stakeholders at different touchpoints - digital,
physical, and everything in between. If you have ever taken an Uber,
participated in the Draw, engaged with your bank, or ordered a coffee
through the Starbucks app, you have experienced a service that must
have a coordinated experience for the customer, the service provider, and
any other stakeholders involved. Let us explore what specialized tools
and processes are required to created these multi-faceted interactions.
Prerequisites: CS147 or equivalent background in design thinking.
Same as: SYMSYS 195S

CS 248. Interactive Computer Graphics. 3-4 Units.
This course provides a comprehensive introduction to interactive
computer graphics, focusing on fundamental concepts and techniques,
as well as their cross-cutting relationship to multiple problem domains
in interactive graphics (such as rendering, animation, geometry, image
processing). Topics include: 2D and 3D drawing, sampling theory,
interpolation, rasterization, image compositing, the real-time GPU
graphics pipeline (and parallel rendering), VR rendering, geometric
transformations, curves and surfaces, geometric data structures,
subdivision, meshing, spatial hierarchies, image processing, time
integration, physically-based animation, and inverse kinematics. The
course will involve several in-depth programming assignments and a
self-selected final project that explores concepts covered in the class.
Prerequisite: CS 107, MATH 51.

CS 250. Algebraic Error Correcting Codes. 3 Units.
Introduction to the theory of error correcting codes, emphasizing
algebraic constructions, and diverse applications throughout computer
science and engineering. Topics include basic bounds on error correcting
codes; Reed-Solomon and Reed-Muller codes; list-decoding, list-
recovery and locality. Applications may include communication, storage,
complexity theory, pseudorandomness, cryptography, streaming
algorithms, group testing, and compressed sensing. Prerequisites: Linear
algebra, basic probability (at the level of, say, CS109, CME106 or EE178)
and "mathematical maturity" (students will be asked to write proofs).
Familiarity with finite fields will be helpful but not required.
Same as: EE 387

CS 251. Cryptocurrencies and blockchain technologies. 3 Units.
For advanced undergraduates and for graduate students. The potential
applications for Bitcoin-like technologies is enormous. The course will
cover the technical aspects of cryptocurrencies, blockchain technologies,
and distributed consensus. Students will learn how these systems work
and how to engineer secure software that interacts with the Bitcoin
network and other cryptocurrencies. Prerequisite: CS110. Recommended:
CS255.

CS 252. Analysis of Boolean Functions. 3 Units.
Boolean functions are among the most basic objects of study in
theoretical computer science. This course is about the study of
boolean functions from a complexity-theoretic perspective, with an
emphasis on analytic methods. We will cover fundamental concepts
and techniques in this area, including influence and noise sensitivity,
polynomial approximation, hypercontractivity, probabilistic invariance
principles, and Gaussian analysis. We will see connections to various
areas of theoretical computer science, including circuit complexity,
pseudorandomness, classical and quantum query complexity, learning
theory, and property testing. Prerequisites: CS 103 and CS 109 or
equivalents. CS 154 and CS 161 recommended.

CS 253. Web Security. 3 Units.
Principles of web security. The fundamentals and state-of-the-art in web
security. Attacks and countermeasures. Topics include: the browser
security model, web app vulnerabilities, injection, denial-of-service, TLS
attacks, privacy, fingerprinting, same-origin policy, cross site scripting,
authentication, JavaScript security, emerging threats, defense-in-depth,
and techniques for writing secure code. Course projects include writing
security exploits, defending insecure web apps, and implementing
emerging web standards. Prerequisite: CS 142 or equivalent web
development experience.

CS 254. Computational Complexity. 3 Units.
An introduction to computational complexity theory. Topics include
the P versus NP problem and other major challenges of complexity
theory; Space complexity: Savitch's theorem and the Immerman-
Szelepscényi theorem; P, NP, coNP, and the polynomial hierarchy; The
power of randomness in computation; Non-uniform computation and
circuit complexity; Interactive proofs. Prerequisites: 154 or equivalent;
mathematical maturity.

CS 254B. Computational Complexity II. 3 Units.
A continuation of CS254 (Computational Complexity). Topics include
Barriers to P versus NP; The relationship between time and space,
and time-space tradeoffs for SAT; The hardness versus randomness
paradigm; Average-case complexity; Fine-grained complexity; Current and
new areas of complexity theory research. Prerequisite: CS254.

CS 255. Introduction to Cryptography. 3 Units.
For advanced undergraduates and graduate students. Theory and
practice of cryptographic techniques used in computer security. Topics:
encryption (symmetric and public key), digital signatures, data integrity,
authentication, key management, PKI, zero-knowledge protocols, and real-
world applications. Prerequisite: basic probability theory.

CS 257. Logic and Artificial Intelligence. 2-4 Units.
This is a course at the intersection of philosophical logic and artificial
intelligence. After reviewing recent work in AI that has leveraged
ideas from logic, we will slow down and study in more detail various
components of high-level intelligence and the tools that have been
designed to capture those components. Specific areas will include:
reasoning about belief and action, causality and counterfactuals, legal
and normative reasoning, natural language inference, and Turing-
complete logical formalisms including (probabilistic) logic programming
and lambda calculus. Our main concern will be understanding the logical
tools themselves, including their formal properties and how they relate to
other tools such as probability and statistics. At the end, students should
expect to have learned a lot more about logic, and also to have a sense
for how logic has been and can be used in AI applications. Prerequisites:
A background in logic, at least at the level of Phil 151, will be expected.
In case a student is willing to put in the extra work to catch up, it may be
possible to take the course with background equivalent to Phil 150 or CS
157. A background in AI, at the level of CS 221, would also be very helpful
and will at times be expected. 2 unit option only for PhD students past
the second year. Course website: http://web.stanford.edu/class/cs257/.
Same as: PHIL 356C

Stanford Bulletin 2020-21

14 Computer Science (CS)

CS 259Q. Quantum Computing. 3 Units.
The course introduces the basics of quantum algorithms, quantum
computational complexity, quantum information theory, and quantum
cryptography, including the models of quantum circuits and quantum
Turing machines, Shor's factoring algorithms, Grover's search algorithm,
the adiabatic algorithms, quantum error-correction, impossibility
results for quantum algorithms, Bell's inequality, quantum information
transmission, and quantum coin flipping. Prerequisites: knowledge of
linear algebra, discrete probability and algorithms.

CS 260. Geometry of Polynomials in Algorithm Design. 3 Units.
Over the years, many powerful algorithms have been built via tools
such as linear programming relaxations, spectral properties of graphs,
and others, that all bridge the discrete and continuous worlds. This
course will cover another such tool recently gaining popularity:
polynomials, their roots, and their analytic properties, collectively
known as geometry of polynomials. The course will cover fundamental
properties of polynomials that are useful in designing algorithms, and
then will showcase applications in several areas of algorithm design:
combinatorial optimization, graph sparsification, high-dimensional
expanders, analysis of random walks on combinatorial objects,
and counting algorithms. Prerequisites: CS161 or equivalent. Basic
knowledge of probability, linear algebra, and calculus.

CS 261. Optimization and Algorithmic Paradigms. 3 Units.
Algorithms for network optimization: max-flow, min-cost flow, matching,
assignment, and min-cut problems. Introduction to linear programming.
Use of LP duality for design and analysis of algorithms. Approximation
algorithms for NP-complete problems such as Steiner Trees, Traveling
Salesman, and scheduling problems. Randomized algorithms.
Introduction to sub-linear algorithms and decision making under
uncertainty. Prerequisite: 161 or equivalent.

CS 263. Counting and Sampling. 3 Units.
This course will cover various algorithm design techniques for two
intimately connected class of problems: sampling from complex
probability distributions and counting combinatorial structures. A large
part of the course will cover Markov Chain Monte Carlo techniques:
coupling, stationary times, canonical paths, Poincare and log-Sobolev
inequalities. Other topics include correlation decay in spin systems,
variational techniques, holographic algorithms, and polynomial
interpolation-based counting. Prerequisites: CS161 or equivalent,
STAT116 or equivalent.

CS 264. Beyond Worst-Case Analysis. 3 Units.
This course is motivated by problems for which the traditional worst-
case analysis of algorithms fails to differentiate meaningfully between
different solutions, or recommends an intuitively "wrong" solution
over the "right" one. This course studies systematically alternatives
to traditional worst-case analysis that nevertheless enable rigorous
and robust guarantees on the performance of an algorithm. Topics
include: instance optimality; smoothed analysis; parameterized analysis
and condition numbers; models of data (pseudorandomness, locality,
diffuse adversaries, etc.); average-case analysis; robust distributional
analysis; resource augmentation; planted and semi-random graph
models. Motivating problems will be drawn from online algorithms, online
learning, constraint satisfaction problems, graph partitioning, scheduling,
linear programming, hashing, machine learning, and auction theory.
Prerequisites: CS161 (required). CS261 is recommended but not required.

CS 265. Randomized Algorithms and Probabilistic Analysis. 3 Units.
Randomness pervades the natural processes around us, from the
formation of networks, to genetic recombination, to quantum physics.
Randomness is also a powerful tool that can be leveraged to create
algorithms and data structures which, in many cases, are more efficient
and simpler than their deterministic counterparts. This course covers
the key tools of probabilistic analysis, and application of these tools
to understand the behaviors of random processes and algorithms.
Emphasis is on theoretical foundations, though we will apply this theory
broadly, discussing applications in machine learning and data analysis,
networking, and systems. Topics include tail bounds, the probabilistic
method, Markov chains, and martingales, with applications to analyzing
random graphs, metric embeddings, random walks, and a host of
powerful and elegant randomized algorithms. Prerequisites: CS 161 and
STAT 116, or equivalents and instructor consent.
Same as: CME 309

CS 268. Geometric Algorithms. 3 Units.
Techniques for design and analysis of efficient geometric algorithms for
objects in 2-, 3-, and higher dimensions. Topics: convexity, triangulations
and simplicial complexes, sweeping, partitioning, and point location.
Voronoi/Delaunay diagrams and their properties. Arrangements of curves
and surfaces. Intersection and visibility problems. Geometric searching
and optimization. Random sampling methods. Range searching. Impact
of numerical issues in geometric computation. Example applications
to robotic motion planning, visibility preprocessing and rendering in
graphics, and model-based recognition in computer vision. Prerequisite:
discrete algorithms at the level of CS161. Recommended: CS164.

CS 269G. Almost Linear Time Graph Algorithms. 3 Units.
Over the past decade there has been an explosion in activity in designing
new provably efficient fast graph algorithms. Leveraging techniques from
disparate areas of computer science and optimization researchers have
made great strides on improving upon the best known running times for
fundamental optimization problems on graphs, in many cases breaking
long-standing barriers to efficient algorithm design. In this course we will
survey these results and cover the key algorithmic tools they leverage
to achieve these breakthroughs. Possible topics include but are not
limited to, spectral graph theory, sparsification, oblivious routing, local
partitioning, Laplacian system solving, and maximum flow. Prerequisites:
calculus and linear algebra.
Same as: MS&E 313

CS 269I. Incentives in Computer Science. 3 Units.
Many 21st-century computer science applications require the design
of software or systems that interact with multiple self-interested
participants. This course will provide students with the vocabulary and
modeling tools to reason about such design problems. Emphasis will
be on understanding basic economic and game theoretic concepts that
are relevant across many application domains, and on case studies that
demonstrate how to apply these concepts to real-world design problems.
Topics include auction and contest design, equilibrium analysis,
cryptocurrencies, design of networks and network protocols, reputation
systems, social choice, and social network analysis. Case studies
include BGP routing, Bitcoin, eBay's reputation system, Facebook's
advertising mechanism, Mechanical Turk, and dynamic pricing in Uber/
Lyft. Prerequisites: CS106B/X and CS161, or permission from the
instructor.

Stanford Bulletin 2020-21

Computer Science (CS) 15

CS 269O. Introduction to Optimization Theory. 3 Units.
Introduction of core algorithmic techniques and proof strategies that
underlie the best known provable guarantees for minimizing high
dimensional convex functions. Focus on broad canonical optimization
problems and survey results for efficiently solving them, ultimately
providing the theoretical foundation for further study in optimization. In
particular, focus will be on first-order methods for both smooth and non-
smooth convex function minimization as well as methods for structured
convex function minimization, discussing algorithms such as gradient
descent, accelerated gradient descent, mirror descent, Newton's method,
interior point methods, and more. Prerequisite: multivariable calculus and
linear algebra.
Same as: MS&E 213

CS 269Q. Elements of Quantum Computer Programming. 3 Units.
For advanced undergraduates and for graduate students. Quantum
computing is an emerging computational paradigm with vast potential.
This course is an introduction to modern quantum programming for
students who want to work with quantum computing technologies
and learn about new paradigms of computation. A physics / quantum
mechanics background is not required. Students will learn the model
of quantum computation, quantum programming languages, hybrid
quantum/classical programming, quantum algorithms, quantum error
correction, and applications. The course is hands on using open source
Python packages for working with publicly available quantum processors.
Prerequisites: linear algebra and programming at the undergraduate level.

CS 270. Modeling Biomedical Systems. 3 Units.
At the core of informatics is the problem of creating computable
models of biomedical phenomena. This course explores methods for
modeling biomedical systems with an emphasis on contemporary
semantic technology, including knowledge graphs. Topics: data modeling,
knowledge representation, controlled terminologies, ontologies, reusable
problem solvers, modeling problems in healthcare information technology
and other aspects of informatics. Students acquire hands-on experience
with several systems and tools. Prerequisites: CS106A. Basic familiarity
with Python programming, biology, probability, and logic are assumed.
Same as: BIOMEDIN 210

CS 271. Artificial Intelligence in Healthcare. 3-4 Units.
Healthcare is one of the most exciting application domains of artificial
intelligence, with transformative potential in areas ranging from medical
image analysis to electronic health records-based prediction and
precision medicine. This course will involve a deep dive into recent
advances in AI in healthcare, focusing in particular on deep learning
approaches for healthcare problems. We will start from foundations
of neural networks, and then study cutting-edge deep learning models
in the context of a variety of healthcare data including image, text,
multimodal and time-series data. In the latter part of the course, we will
cover advanced topics on open challenges of integrating AI in a societal
application such as healthcare, including interpretability, robustness,
privacy and fairness. The course aims to provide students from diverse
backgrounds with both conceptual understanding and practical
grounding of cutting-edge research on AI in healthcare. Prerequisites:
Proficiency in Python or ability to self-learn; familiarity with machine
learning and basic calculus, linear algebra, statistics; familiarity with
deep learning highly recommended (e.g. prior experience training a deep
learning model).
Same as: BIODS 220, BIOMEDIN 220

CS 272. Introduction to Biomedical Informatics Research Methodology.
3-5 Units.
Capstone Biomedical Informatics (BMI) experience. Hands-on software
building. Student teams conceive, design, specify, implement, evaluate,
and report on a software project in the domain of biomedicine. Creating
written proposals, peer review, providing status reports, and preparing
final reports. Issues related to research reproducibility. Guest lectures
from professional biomedical informatics systems builders on issues
related to the process of project management. Software engineering
basics. Because the team projects start in the first week of class,
attendance that week is strongly recommended. Prerequisites: BIOMEDIN
210 or 214 or 215 or 217 or 260. Preference to BMI graduate students.
Consent of instructor required.
Same as: BIOE 212, BIOMEDIN 212, GENE 212

CS 273A. The Human Genome Source Code. 3 Units.
A computational primer to "hacking" the most amazing operating system
"disk" on the planet: your genome. Handling genomic data is deceptively
easy. But that's muscle. You want to be the brain, too. Topics include
genome sequencing (assembling source code from code fragments);
the human genome functional landscape: variable assignments (genes),
control-flow logic (gene regulation) and run-time stack (epigenomics);
human disease and personalized genomics (as a hunt for bugs in the
human code); genome editing (code injection) to cure the incurable;
and the source code modifications behind amazing animal adaptations.
The course will introduce ideas from computational genomics, machine
learning and natural language processing. Course includes primers on
molecular biology, and text processing languages. Prerequisites: CS106A
or equivalent. No biological background assumed.
Same as: BIOMEDIN 273A, DBIO 273A

CS 273B. Deep Learning in Genomics and Biomedicine. 3 Units.
Recent breakthroughs in high-throughput genomic and biomedical data
are transforming biological sciences into "big data" disciplines. In parallel,
progress in deep neural networks are revolutionizing fields such as image
recognition, natural language processing and, more broadly, AI. This
course explores the exciting intersection between these two advances.
The course will start with an introduction to deep learning and overview
the relevant background in genomics and high-throughput biotechnology,
focusing on the available data and their relevance. It will then cover the
ongoing developments in deep learning (supervised, unsupervised and
generative models) with the focus on the applications of these methods
to biomedical data, which are beginning to produced dramatic results. In
addition to predictive modeling, the course emphasizes how to visualize
and extract interpretable, biological insights from such models. Recent
papers from the literature will be presented and discussed. Students
will be introduced to and work with popular deep learning software
frameworks. Students will work in groups on a final class project using
real world datasets. Prerequisites: College calculus, linear algebra, basic
probability and statistics such as CS 109, and basic machine learning
such as CS 229. No prior knowledge of genomics is necessary.
Same as: BIODS 237, BIOMEDIN 273B, GENE 236

CS 273C. Cloud Computing for Biology and Healthcare. 3 Units.
Big Data is radically transforming healthcare. To provide real-time
personalized healthcare, we need hardware and software solutions that
can efficiently store and process large-scale biomedical datasets. In this
class, students will learn the concepts of cloud computing and parallel
systems' architecture. This class prepares students to understand
how to design parallel programs for computationally intensive medical
applications and how to run these applications on computing frameworks
such as Cloud Computing and High Performance Computing (HPC)
systems. Prerequisites: familiarity with programming in Python and R.
Same as: BIOMEDIN 222, GENE 222

Stanford Bulletin 2020-21

16 Computer Science (CS)

CS 274. Representations and Algorithms for Computational Molecular
Biology. 3-4 Units.
Topics: introduction to bioinformatics and computational biology,
algorithms for alignment of biological sequences and structures,
computing with strings, phylogenetic tree construction, hidden Markov
models, basic structural computations on proteins, protein structure
prediction, protein threading techniques, homology modeling, molecular
dynamics and energy minimization, statistical analysis of 3D biological
data, integration of data sources, knowledge representation and
controlled terminologies for molecular biology, microarray analysis,
machine learning (clustering and classification), and natural language
text processing. Prerequisite: CS 106B; recommended: CS161; consent of
instructor for 3 units.
Same as: BIOE 214, BIOMEDIN 214, GENE 214

CS 275. Translational Bioinformatics. 3-4 Units.
Computational methods for the translation of biomedical data into
diagnostic, prognostic, and therapeutic applications in medicine. Topics:
multi-scale omics data generation and analysis, utility and limitations of
public biomedical resources, machine learning and data mining, issues
and opportunities in drug discovery, and mobile/digital health solutions.
Case studies and course project. Prerequisites: programming ability at
the level of CS 106A and familiarity with biology and statistics.
Same as: BIOE 217, BIOMEDIN 217, GENE 217

CS 275A. Symbolic Musical Information. 2-4 Units.
Focus on symbolic data for music applications including advanced
notation systems, optical music recognition, musical data conversion,
and internal structure of MIDI files.
Same as: MUSIC 253

CS 275B. Computational Music Analysis. 2-4 Units.
Leveraging off three synchronized sets of symbolic data resources for
notation and analysis, the lab portion introduces students to the open-
source Humdrum Toolkit for music representation and analysis. Issues
of data content and quality as well as methods of information retrieval,
visualization, and summarization are considered in class. Grading based
primarily on student projects. Prerequisite: 253 or consent of instructor.
Same as: MUSIC 254

CS 276. Information Retrieval and Web Search. 3 Units.
Text information retrieval systems; efficient text indexing; Boolean, vector
space, and probabilistic retrieval models; ranking and rank aggregation;
evaluating IR systems; text clustering and classification; Web search
engines including crawling and indexing, link-based algorithms, web
metadata, and question answering; distributed word representations.
Prerequisites: CS 107, CS 109, CS 161.
Same as: LINGUIST 286

CS 278. Social Computing. 3 Units.
Today we interact with our friends and enemies, our team partners and
romantic partners, and our organizations and societies, all through
computational systems. How do we design these social computing
systems to be effective and responsible? This course covers design
patterns for social computing and crowdsourcing systems, and the
foundational ideas that underpin them. Students will engage in the
creation of new computationally-mediated social environments.

CS 279. Computational Biology: Structure and Organization of
Biomolecules and Cells. 3 Units.
Computational techniques for investigating and designing the three-
dimensional structure and dynamics of biomolecules and cells. These
computational methods play an increasingly important role in drug
discovery, medicine, bioengineering, and molecular biology. Course topics
include protein structure prediction, protein design, drug screening,
molecular simulation, cellular-level simulation, image analysis for
microscopy, and methods for solving structures from crystallography
and electron microscopy data. Prerequisites: elementary programming
background (CS 106A or equivalent) and an introductory course in biology
or biochemistry.
Same as: BIOE 279, BIOMEDIN 279, BIOPHYS 279, CME 279

CS 28. Artificial Intelligence, Entrepreneurship and Society in the 21st
Century and Beyond. 2 Units.
Technical developments in artificial intelligence (AI) have opened up
new opportunities for entrepreneurship, as well as raised profound
longer term questions about how human societal and economic systems
may be reorganized to accommodate the rise of intelligent machines.
In this course, closely cotaught by a Stanford professor and a leading
Silicon Valley venture capitalist, we will examine the current state of
the art capabilities of existing artificial intelligence systems, as well
as economic challenges and opportunities in early stage startups and
large companies that could leverage AI. We will focus on gaps between
business needs and current technical capabilities to identify high impact
directions for the development of future AI technology. Simultaneously,
we will explore the longer term societal impact of AI driven by inexorable
trends in technology and entrepreneurship. The course includes guest
lectures from leading technologists and entrepreneurs who employ AI
in a variety of fields, including healthcare, education, selfdriving cars,
computer security, natural language interfaces, computer vision systems,
and hardware acceleration.

CS 294A. Research Project in Artificial Intelligence. 3 Units.
Student teams under faculty supervision work on research and
implementation of a large project in AI. State-of-the-art methods related
to the problem domain. Prerequisites: AI course from 220 series, and
consent of instructor.

CS 294S. Research Project in Software Systems and Security. 3 Units.
Topics vary. Focus is on emerging research themes such as
programmable open mobile Internet that spans multiple system
topics such as human-computer interaction, programming systems,
operating systems, networking, and security. May be repeated for credit.
Prerequisites: CS 103 and 107.

CS 294W. Writing Intensive Research Project in Computer Science. 3
Units.
Restricted to Computer Science and Computer Systems Engineering
undergraduates. Students enroll in the CS 294W section attached to the
CS 294 project they have chosen.

CS 298. Seminar on Teaching Introductory Computer Science. 1 Unit.
Faculty, undergraduates, and graduate students interested in teaching
discuss topics raised by teaching computer science at the introductory
level. Prerequisite: consent of instructor.
Same as: EDUC 298

CS 300. Departmental Lecture Series. 1 Unit.
Priority given to first-year Computer Science Ph.D. students. CS Masters
students admitted if space is available. Presentations by members of the
department faculty, each describing informally his or her current research
interests and views of computer science as a whole.

CS 309. Industrial Lectureships in Computer Science. 1 Unit.
Guest computer scientist. By arrangement. May be repeated for credit.

CS 309A. Cloud Computing Seminar. 1 Unit.
For science, engineering, computer science, business, education,
medicine, and law students. Cloud computing is bringing information
systems out of the back office and making it core to the entire economy.
Furthermore with the advent of smarter machines cloud computing will
be integral to building a more precision planet. This class is intended for
all students who want to begin to understand the implications of this
technology. Guest industry experts are public company CEOs who are
either delivering cloud services or using cloud services to transform their
businesses.

CS 315B. Parallel Computing Research Project. 3 Units.
Advanced topics and new paradigms in parallel computing including
parallel algorithms, programming languages, runtime environments,
library debugging/tuning tools, and scalable architectures. Research
project. Prerequisite: consent of instructor.

Stanford Bulletin 2020-21

Computer Science (CS) 17

CS 316. Advanced Multi-Core Systems. 3 Units.
In-depth coverage of the architectural techniques used in modern,
multi-core chips for mobile and server systems. Advanced processor
design techniques (superscalar cores, VLIW cores, multi-threaded
cores, energy-efficient cores), cache coherence, memory consistency,
vector processors, graphics processors, heterogeneous processors, and
hardware support for security and parallel programming. Students will
become familiar with complex trade-offs between performance-power-
complexity and hardware-software interactions. A central part of CS316
is a project on an open research question on multi-core technologies.
Prerequisites: EE 180 (formerly 108B) and EE 282. Recommended: CS
149.

CS 319. Topics in Digital Systems. 3 Units.
Advanced material is often taught for the first time as a topics course,
perhaps by a faculty member visiting from another institution. May be
repeated for credit.

CS 31N. Counterfactuals: The Science of What Ifs?. 3 Units.
How might the past have changed if different decisions were made? This
question has captured the fascination of people for hundreds of years.
By precisely asking, and answering such questions of counterfactual
inference, we have the opportunity to both understand the impact of
past decisions (has climate change worsened economic inequality?) and
inform future choices (can we use historical electronic medical records
data about decision made and outcomes, to create better protocols to
enhance patient health?). In this course I will introduce some of the most
common quantitative approaches to counterfactual reasoning, as well
as give a wide sampling of some of the many important problems and
questions that can be addressed through the lense of counterfactual
reasoning, including in climate change, healthcare and economics.
No prior experience with counterfactual or ¿what if¿ reasoning, nor
probability, is required.

CS 320. Value of Data and AI. 3 Units.
Many of the most valuable companies in the world and the most
innovative startups have business models based on data and AI, but
our understanding about the economic value of data, networks and
algorithmic assets remains at an early stage. For example, what is the
value of a new dataset or an improved algorithm? How should investors
value a data-centric business such as Netflix, Uber, Google, or Facebook?
And what business models can best leverage data and algorithmic
assets in settings as diverse as e-commerce, manufacturing, biotech and
humanitarian organizations? In this graduate seminar, we will investigate
these questions by studying recent research on these topics and by
hosting in-depth discussions with experts from industry and academia.
Key topics will include value of data quantity and quality in statistics and
AI, business models around data, networks, scaling effects, economic
theory around data, and emerging data protection regulations. Students
will also conduct a group research projects in this field.nnPrerequisites:
Sufficient mathematical maturity to follow the technical content; some
familiarity with data mining and machine learning and at least an
undergraduate course in statistics are recommended.

CS 323. Automated Reasoning: Theory and Applications. 3-4 Units.
Intelligent computer agents must reason about complex, uncertain, and
dynamic environments. This course is a graduate level introduction to
automated reasoning techniques and their applications, covering logical
and probabilistic approaches. Topics include: logical and probabilistic
foundations, backtracking strategies and algorithms behind modern
SAT solvers, stochastic local search and Markov Chain Monte Carlo
algorithms, variational techniques, classes of reasoning tasks and
reductions, and applications.

CS 325B. Data for Sustainable Development. 3-5 Units.
The sustainable development goals (SDGs) encompass many important
aspects of human and ecosystem well-being that are traditionally
difficult to measure. This project-based course will focus on ways to
use inexpensive, unconventional data streams to measure outcomes
relevant to SDGs, including poverty, hunger, health, governance, and
economic activity. Students will apply machine learning techniques
to various projects outlined at the beginning of the quarter. The main
learning goals are to gain experience conducting and communicating
original research. Prior knowledge of machine learning techniques, such
as from CS 221, CS 229, CS 231N, STATS 202, or STATS 216 is required.
Open to both undergraduate and graduate students. Enrollment limited
to 24. Students must apply for the class by filling out the form at https://
goo.gl/forms/9LSZF7lPkHadix5D3. A permission code will be given to
admitted students to register for the class.
Same as: EARTHSYS 162, EARTHSYS 262

CS 326. Topics in Advanced Robotic Manipulation. 3-4 Units.
This course provides a survey of the most important and influential
concepts in autonomous robotic manipulation. It includes classical
concepts that are still widely used and recent approaches that have
changed the way we look autonomous manipulation. We cover
approaches towards motion planning and control using visual
and tactile perception as well as machine learning. This course is
especially concerned with new approaches for overcoming challenges
in generalization from experience, exploration of the environment,
and learning representation so that these methods can scale to real
problems. Students are expected to present one paper in a tutorial,
debate a paper once from the Pro and once from the Con side. They
are also expected to propose an original research project and work
on it towards a research paper. Recommended: CS 131, 223A, 229 or
equivalents.

CS 327A. Advanced Robotic Manipulation. 3 Units.
Advanced control methodologies and novel design techniques for
complex human-like robotic and bio mechanical systems. Class covers
the fundamentals in operational space dynamics and control, elastic
planning, human motion synthesis. Topics include redundancy, inertial
properties, haptics, simulation, robot cooperation, mobile manipulation,
human-friendly robot design, humanoids and whole-body control.
Additional topcs in emerging areas are presented by groups of students
at the end-of-quarter mini-symposium. Prerequisites: 223A or equivalent.

CS 328. Topics in Computer Vision. 3 Units.
Fundamental issues of, and mathematical models for, computer vision.
Sample topics: camera calibration, texture, stereo, motion, shape
representation, image retrieval, experimental techniques. May be
repeated for credit. Prerequisites: 205, 223B, or equivalents.

CS 329. Topics in Artificial Intelligence. 3 Units.
Advanced material is often taught for the first time as a topics course,
perhaps by a faculty member visiting from another institution. May be
repeated for credit.

CS 329D. Machine Learning Under Distributional Shifts. 3 Units.
The progress of machine learning systems has seemed remarkable
and inexorable ¿ a wide array of benchmark tasks including image
classification, speech recognition, and question answering have seen
consistent and substantial accuracy gains year on year. However, these
same models are known to fail consistently on atypical examples and
domains not contained within the training data. The goal of the course
is to introduce the variety of areas in which distributional shifts appear,
as well as provide theoretical characterization and learning bounds for
distribution shifts. Prerequisites: CS229 or equivalent. Recommended:
CS229T (or basic knowledge of learning theory).

Stanford Bulletin 2020-21

18 Computer Science (CS)

CS 329M. Topics in Artificial Intelligence: Algorithms of Advanced
Machine Learning. 3 Units.
This advanced graduate course explores in depth several important
classes of algorithms in modern machine learning. We will focus on
understanding the mathematical properties of these algorithms in order
to gain deeper insights on when and why they perform well. We will also
study applications of each algorithm on interesting, real-world settings.
Topics include: spectral clustering, tensor decomposition, Hamiltonian
Monte Carlo, adversarial training, and variational approximation. Students
will learn mathematical techniques for analyzing these algorithms and
hands-on experience in using them. We will supplement the lectures with
latest papers and there will be a significant research project component
to the class. Prerequisites: Probability (CS 109), linear algebra (Math 113),
machine learning (CS 229), and some coding experience.

CS 329S. Machine Learning Systems Design. 3-4 Units.
This project-based course covers the iterative process for designing,
developing, and deploying machine learning systems. It focuses on
systems that require massive datasets and compute resources, such
as large neural networks. Students will learn about the different layers
of the data pipeline, approaches to model selection, training, scaling,
as well as how to deploy, monitor, and maintain ML systems. In the
process, students will learn about important issues including privacy,
fairness, and security. Pre-requisites: At least one of the following; CS229,
CS230, CS231N, CS224N or equivalent. Students should have a good
understanding of machine learning algorithms and should be familiar
with at least one framework such as TensorFlow, PyTorch, JAX.

CS 330. Deep Multi-task and Meta Learning. 3 Units.
While deep learning has achieved remarkable success in supervised and
reinforcement learning problems, such as image classification, speech
recognition, and game playing, these models are, to a large degree,
specialized for the single task they are trained for. This course will cover
the setting where there are multiple tasks to be solved, and study how
the structure arising from multiple tasks can benleveraged to learn more
efficiently or effectively. This includes: goal-conditioned reinforcement
learning techniques that leverage the structure of the provided goal
space to learn many tasks significantly faster; meta-learning methods
that aim to learn efficient learning algorithms that can learn new tasks
quickly; curriculum and lifelong learning, where the problem requires
learning a sequence of tasks, leveraging their shared structure to enable
knowledge transfer. This is a graduate-level course. By the end of the
course, students should be able to understand andnimplement the state-
of-the-art multi-task learning algorithms and be ready to conduct research
on these topics. Prerequisites: CS 229 or equivalent. Familiarity with deep
learning, reinforcement learning, and machine learning is assumed.

CS 331B. Representation Learning in Computer Vision. 3 Units.
A representation performs the task of converting an observation in the
real world (e.g. an image, a recorded speech signal, a word in a sentence)
into a mathematical form (e.g. a vector). This mathematical form is then
used by subsequent steps (e.g. a classifier) to produce the outcome,
such as classifying an image or recognizing a spoken word. Forming
the proper representation for a task is an essential problem in modern
AI. In this course, we focus on 1) establishing why representations
matter, 2) classical and moderns methods of forming representations in
Computer Vision, 3) methods of analyzing and probing representations,
4) portraying the future landscape of representations with generic and
comprehensive AI/vision systems over the horizon, and finally 5) going
beyond computer vision by talking about non-visual representations, such
as the ones used in NLP or neuroscience. The course will heavily feature
systems based on deep learning and convolutional neural networks. We
will have several teaching lectures, a number of prominent external guest
speakers, as well as presentations by the students on recent papers and
their projects. nnRequired Prerequisites: CS131A, CS231A, CS231B, or
CS231N. If you do not have the required prerequisites, please contact a
member of the course staff before enrolling in this course.

CS 332. Advanced Survey of Reinforcement Learning. 3 Units.
This class will provide a core overview of essential topics and new
research frontiers in reinforcement learning. Planned topics include:
model free and model based reinforcement learning, policy search, Monte
Carlo Tree Search planning methods, off policy evaluation, exploration,
imitation learning, temporal abstraction/hierarchical approaches, safety
and risk sensitivity, human-in-the-loop RL, inverse reinforcement learning,
learning to communicate, and insights from human learning. Students
are expected to create an original research paper on a related topic.
Prerequisites: CS 221 or AA 238/CS 238 or CS 234 or CS 229 or similar
experience.

CS 333. Algorithms for Interactive Robotics. 3-4 Units.
Once confined to the manufacturing floor, robots are quickly entering the
public space at multiple levels: drones, surgical robots, service robots,
and self-driving cars are becoming tangible technologies impacting the
human experience. Our goal in this class is to learn about and design
algorithms that enable robots to reason about their actions, interact with
one another, the humans, and the environment they live in, as well as
plan safe strategies that humans can trust and rely on. This is a project-
based graduate course that covers a broad set of algorithms in robotics,
machine learning, and control theory for the goal of developing interactive
human-robot systems. Recommended: Introductory course in AI, machine
learning, and robotics.

CS 335. Fair, Accountable, and Transparent (FAccT) Deep Learning. 3
Units.
Deep learning-based AI systems have demonstrated remarkable learning
capabilities. A growing field in deep learning research focuses on
improving the Fairness, Accountability, and Transparency (FAccT) of a
model in addition to its performance. Although FAccT will be difficult
to achieve, emerging technical approaches in this topic show promise
in making better FAccT AI systems. In this course, we will study the
rigorous computer science necessary foundations for FAccT deep
learning and dive into the technical underpinnings of topics including
fairness, robustness, interpretability, accountability, and privacy. These
topics reflect state-of-the-art research in FAccT, are socially important,
and they have strong industrial interest due to government and other
policy regulation. This course will focus on the algorithmic and statistical
methods needed to approach FAccT AI from a deep learning perspective.
We will also discuss several application areas where we can apply these
techniques. Prerequisites: Intermediate knowledge of statistics, machine
learning, and AI. Qualified students will have taken any one of the
following, or their advanced equivalents: CS224N, CS230, CS231N, CS236,
CS273B. Alternatively, students who have taken CS229 or have equivalent
knowledge can be admitted with the permission of the instructors.

CS 337. AI-Assisted Care. 1 Unit.
AI has been advancing quickly, with its impact everywhere. In healthcare,
innovation in AI could help transforming of our healthcare system. This
course offers a diverse set of research projects focusing on cutting edge
computer vision and machine learning technologies to solve some of
healthcare's most important problems. The teaching team and teaching
assistants will work closely with students on research projects in this
area. Research projects include Care for Senior at Senior Home, Surgical
Quality Analysis, AI Assisted Parenting, Burn Analysis & Assessment
and more. AI areas include Video Understanding, Image Classification,
Object Detection, Segmentation, Action Recognition, Deep Learning,
Reinforcement Learning, HCI and more. The course is open to students in
both school of medicine and school of engineering.
Same as: MED 277

Stanford Bulletin 2020-21

Computer Science (CS) 19

CS 338. Physical Human Robot Interaction. 3 Units.
Robotics researchers and futurists have long dreamed of robots that can
serve as assistants or caregivers. One important research area to develop
such robots in the immediate future is Physical Human-Robot Interaction
(pHRI). Assistive robots have the potential to provide adaptable and
intelligent assistance to people in need, but developing such a robot
is challenging because the robot needs to coordinate its motion with
human, often through physical contacts. Reliable mechanical and control
methods need to be developed in consideration of actively participating
humans, while safety and dependability issues have to be addressed to
successfully introduce robots in everyday environments. In this hands-on
project-based course, students will learn about future opportunities and
present realities for autonomous robots that provide physical assistance
to humans. Students will also gain experience with key technologies for
the creation of autonomous robots, including perception, action, human-
robot interaction, and learning. Prerequisites: CS223A.

CS 339N. Machine Learning Methods for Neural Data Analysis. 3 Units.
With modern high-density electrodes and optical imaging techniques,
neuroscientists routinely measure the activity of hundreds, if not
thousands, of cells simultaneously. Coupled with high-resolution
behavioral measurements, genetic sequencing, and connectomics, these
datasets offer unprecedented opportunities to learn how neural circuits
function. This course will study statistical machine learning methods for
analysing such datasets, including: spike sorting, calcium deconvolution,
and voltage smoothing techniques for extracting relevant signals from
raw data; markerless tracking methods for estimating animal pose in
behavioral videos; network models for connectomics and fMRI data; state
space models for analysis of high-dimensional neural and behavioral
time-series; point process models of neural spike trains; and deep
learning methods for neural encoding and decoding. We will develop
the theory behind these models and algorithms and then apply them to
real datasets in the homeworks and final project.This course is similar
to STATS215: Statistical Models in Biology and STATS366: Modern
Statistics for Modern Biology, but it is specifically focused on statistical
machine learning methods for neuroscience data. Prerequisites: Students
should be comfortable with basic probability (STATS 116) and statistics
(at the level of STATS 200). This course will place a heavy emphasis on
implementing models and algorithms, so coding proficiency is required.
Same as: NBIO 220, STATS 220, STATS 320

CS 340. Topics in Computer Systems. 3-4 Units.
Topics vary every quarter, and may include advanced material being
taught for the first time. May be repeated for credit.

CS 340LX. Advanced Operating System Lab: Accelerated. 2 Units.
This is an implementation-heavy, lab-based class that continues
the topics from CS240LX. The labs will be more specialized, with an
emphasis on research-worthy topics and techniques. The class format
will follow CS240LX: two labs, twice a week, along with a set of research
papers for context. Enrollment requires instructor permission.
Same as: II

CS 341. Project in Mining Massive Data Sets. 3 Units.
Students work in teams of three to solve a problem involving the analysis
of a massive dataset. A proposal, early in March is required. There will
be an information session (announced in CS246) explaining the datasets
available in early March and this information will also be on the CS341
course website in late February. Each accepted team will be assigned a
mentor who will work with them regularly throughout the quarter. Teams
will also be provided access to significant computing resources on a
commercial public cloud.

CS 342. Building for Digital Health. 3 Units.
This project-based course will provide a comprehensive overview of key
requirements in the design and full-stack implementation of a digital
health research application. Several pre-vetted and approved projects
from the Stanford School of Medicine will be available for students to
select from and build. Student teams learn about all necessary approval
processes to deploy a digital health solution (data privacy clearance/
I RB approval, etc.) and be guided in the development of front-end and
back-end infrastructure using best practices. The final project will be the
presentation and deployment of a fully approved digital health research
application. CS106A, CS106B, Recommended: CS193P/A, CS142, CS47,
CS110. Limited enrollment for this course.
Same as: MED 253

CS 343D. Domain-Specific Programming Models and Compilers. 3 Units.
This class will cover the principles and practices of domain-specific
programming models and compilers for dense and sparse applications in
scientific computing, data science, and machine learning. We will study
programming models from the recent literature, categorize them, and
discuss their properties. We will also discuss promising directions for
their compilation, including the separation of algorithm, schedule, and
data representation, polyhedral compilation versus rewrite rules, and
sparse iteration theory. Prerequisites: CS161 or equivalent, STATS116 or
equivalent.

CS 344. Topics in Computer Networks. 3 Units.
This class could also be called "Build an Internet Router": Students work
in teams of two to build a fully functioning Internet router, gaining hands-
on experience building the hardware and software of a high-performance
network system. Students design the control plane in C on a linux host
and design the data plane in the new P4 language on both a software
switch and a high-speed hardware switch (e.g., Intel Tofino). For the
midterm milestone, teams must demonstrate that their routers can
interoperate with the other teams by building a small scale datacenter
topology. In the final 3-4 weeks of the class, teams will participate in an
open-ended design challenge. Prerequisites: At least one student in each
team must have taken CS144 at Stanford and completed Lab 3 (static
router). No Verilog or FPGA programming experience is required. May be
repeated for credit.

CS 345S. Data-intensive Systems for the Next 1000x. 3-4 Units.
The last decade saw enormous shifts in the design of large-scale data-
intensive systems due to the rise of Internet services, cloud computing,
and Big Data processing. Where will we see the next 1000x increases
in scale and data volume, and how should data-intensive systems
accordingly evolve? This course will critically examine a range of trends,
including the Internet of Things, drones, smart cities, and emerging
hardware capabilities, through the lens of software systems research
and design. Students will perform a comparative analysis by reading
and discussing cutting-edge research while performing their own
original research. Prerequisites: Strong background in software systems,
especially databases (CS 245) and distributed systems (CS 244B), and/or
machine learning (CS 229). Undergraduates who have completed CS 245
are strongly encouraged to attend.

CS 347. Human-Computer Interaction: Foundations and Frontiers. 3-4
Units.
(Previously numbered CS376.) How will the future of human-computer
interaction evolve? This course equips students with the major animating
theories of human-computer interaction, and connects those theories
to modern innovations in research. Major theories are drawn from
interaction (e.g., tangible and ubiquitous computing), social computing
(e.g., Johansen matrix), and design (e.g., reflective practitioner, wicked
problems), and span domains such as AI+HCI (e.g., mixed initiative
interaction), accessibility (e.g., ability based design), and interface
software tools (e.g., threshold/ceiling diagrams). Students read and
comment on multiple research papers per week, and perform a quarter-
long research project. Prerequisites: For CS and Symbolic Systems
undergraduates/masters students, CS147 or CS247. No prerequisite for
PhD students or students outside of CS and Symbolic Systems.

Stanford Bulletin 2020-21

20 Computer Science (CS)

CS 348A. Computer Graphics: Geometric Modeling & Processing. 3 Units.
The mathematical tools needed for the geometrical aspects of computer
graphics and especially for modeling smooth shapes. The course
covers classical computer-aided design, geometry processing, and data-
driven approaches for shape generation. Fundamentals: homogeneous
coordinates and transformation. Theory of parametric and implicit
curve and surface models: polar forms, Bézier arcs and de Casteljau
subdivision, continuity constraints, B-splines, tensor product, and
triangular patch surfaces. Subdivision surfaces and multi-resolution
representations of geometry. Surface reconstruction from scattered
data points. Geometry processing on meshes, including simplification
and parametrization. Deep neural generative models for 3D geometry:
parametric and implicit approaches, VAEs and GANs. Prerequisite: linear
algebra at the level of CME103. Recommended: CS248.

CS 348B. Computer Graphics: Image Synthesis Techniques. 3-4 Units.
Intermediate level, emphasizing high-quality image synthesis algorithms
and systems issues in rendering. Topics include: Reyes and advanced
rasterization, including motion blur and depth of field; ray tracing and
physically based rendering; Monte Carlo algorithms for rendering,
including direct illumination and global illumination; path tracing and
photon mapping; surface reflection and light source models; volume
rendering and subsurface scattering; SIMD and multi-core parallelism for
rendering. Written assignments and programming projects. Prerequisite:
248 or equivalent. Recommended: Fourier analysis or digital signal
processing.

CS 348C. Computer Graphics: Animation and Simulation. 3 Units.
Core mathematics and methods for computer animation and motion
simulation. Traditional animation techniques. Physics-based simulation
methods for modeling shape and motion: particle systems, constraints,
rigid bodies, deformable models, collisions and contact, fluids, and
fracture. Animating natural phenomena. Methods for animating virtual
characters and crowds. Additional topics selected from data-driven
animation methods, realism and perception, animation systems, motion
control, real-time and interactive methods, and multi-sensory feedback.
Recommended: CS 148 and/or 205A. Prerequisite: linear algebra.

CS 348E. Character Animation: Modeling, Simulation, and Control of
Human Motion. 3 Units.
This course introduces technologies and mathematical tools for
simulating, modeling, and controlling human/animal movements.
Students will be exposed to integrated knowledge and techniques across
computer graphics, robotics, machine learning and biomechanics. The
topics include numerical integration, 3D character modeling, keyframe
animation, skinning/rigging, multi-body dynamics, human kinematics,
muscle dynamics, trajectory optimization, learning policies for motor
skills, and motion capture. Students who successfully complete this
course will be able to use and modify physics simulator for character
animation or robotic applications, to design/train control policies for
locomotion or manipulation tasks on virtual agents, and to leverage
motion capture data for synthesizing realistic virtual humans. The
evaluation of this course is based on three assignments and an open-
ended research project. Recommended Prerequisite: CS148 or CS205A.

CS 348I. Computer Graphics in the Era of AI. 3 Units.
This course introduces deep learning methods and AI technologies
applied to four main areas of Computer Graphics: rendering, geometry,
animation, and computational photography. We will study a wide range
of problems on content creation for images, shapes, and animations,
recently advanced by deep learning techniques. For each problem,
we will understand its conventional solutions, study the state-of-the-
art learning-based approaches, and critically evaluate their results
as well as the impacts to researchers and practitioners in Computer
Graphics. The topics include differentiable rendering/neural rendering,
BRDF estimation, texture synthesis, denoising, procedural modeling,
mesh segmentation, view prediction, colorization, style transfer, sketch
simplification, character animation, physics simulation, and facial
animation. Through programming projects and homework, students who
successfully complete this course will be able to use neural rendering
algorithms for image manipulation, to apply neural procedural modeling
for shape and scene synthesis, to implement policy learning algorithms
for creating character animation, and to exploit data-driven methods for
simulating physical phenomena. Recommended Prerequisites: CS248,
CS231N, CS229, CS205A.

CS 348K. Visual Computing Systems. 3-4 Units.
Visual computing tasks such as computational photography, image/
video understanding, and real-time 3D graphics are key responsibilities
of modern computer systems ranging from sensor-rich smart phones,
autonomous robots, and large data centers. These workloads demand
exceptional system efficiency and this course examines the key ideas,
techniques, and challenges associated with the design of parallel,
heterogeneous systems that execute and accelerate visual computing
applications. This course is intended for graduate and advanced
undergraduate-level students interested in architecting efficient graphics,
image processing, and computer vision systems (both new hardware
architectures and domain-optimized programming frameworks) and for
students in graphics, vision, and ML that seek to understand throughput
computing concepts so they can develop scalable algorithms for these
platforms. Students will perform daily research paper readings, complete
simple programming assignments, and compete a self-selected term
project. Prerequisites: CS 107 or equivalent. Highly recommended:
Parallel Computing (CS149) or Computer Architecture (EE 282). Students
will benefit from some background in deep learning (CS 230, CS 231N),
computer vision (CS 231A), digital image processing (CS 232) or
computer graphics (CS248).

CS 349. Topics in Programming Systems. 3 Units.
Advanced material is often taught for the first time as a topics course,
perhaps by a faculty member visiting from another institution. May be
repeated for credit.

CS 349D. Cloud Computing Technology. 3 Units.
The largest change in the computer industry over the past five years
has arguably been the emergence of cloud computing: organizations
are increasingly moving their workloads to managed public clouds
and using new, global-scale services that were simply not possible in
private datacenters. However, both building and using cloud systems
remains a black art with many difficult research challenges. This research
seminar will cover industry and academic work on cloud computing
and survey challenges including programming interfaces, cloud native
applications, resource management, pricing, availability and reliability,
privacy and security. Students will also propose and develop an original
research project.n nPrerequisites: For graduate students, background in
computer systems (CS 240, 244, 244B or 245) is strongly recommended.
Undergrads will need instructor's approval.

Stanford Bulletin 2020-21

Computer Science (CS) 21

CS 349F. Technology for Financial Systems. 2 Units.
Financial systems have spurred technological innovation and, in turn, are
driven byncutting-edge technological developments. This course explores
the synergy.nStudents will learn from faculty and industry experts how
to build faster and fairer financial systems. Topics include network
infrastructure: data center fabrics, ultra-low latency trading systems;
cloud computing infrastructure: building large-scale risk computation
platforms using virtual machines, containers and serverless computing.
A particular focus will be on challenges and opportunities presented
by cloud-native financial exchanges: the course will provide such an
exchange and student groups will write programs for high-frequency and
algorithmic trading. Recommended: Knowledge of basic Networking, OS,
or Distributed Systems (CS 144, 140, or equivalent), as well as basic EE
courses (EE 178) will be useful.

CS 349G. Selected Reading of Ph.D. Dissertations. 3 Units.
Detailed reading of 5 selected Ph.D. dissertations within a field of
computer science. For undergraduates, the course is an introduction
to advanced foundational concepts within a field as well as an in-depth
look at detailed research. For graduate students, the course focuses
on historical reading as well as an opportunity to read dissertations
and discuss their strengths and weaknesses. Both groups of students
discuss historical context, how ideas succeeded or did not and why,
and how they manifest in modern technology. The discussion of each
dissertation completes with a guest lecture by its author. The selected
dissertations change with each offering but are always from a coherent
time period and topic area. Prerequisites: CS110 for undergraduates,
EE282 for graduate students.

CS 349T. Project Lab: Video and Audio Technology for Live Theater in the
Age of COVID. 3 Units.
This class is part of a multi-disciplinary collaboration between
researchers in the CS, EE, and TAPS departments to design and develop
a system to host a live theatrical production that will take place over
the Internet in the winter quarter. The performing arts have been greatly
affected by a transition to theater over Zoom and its competitors, none
of which are great at delivering low-latency audio to actors, or high-
quality audio and video to the audience, or feedback from the audience
back to actors. These are big technical challenges. During the fall, we'll
build a system that improves on current systems in certain areas: audio
quality and latency over spotty Internet connections, video quality and
realistic composited scenes with multiple actors, audience feedback,
and perhaps digital puppetry. Students will learn to be part of a deadline-
driven software development effort working to meet the needs of a
theater director and creative specialists -- while communicating the effect
of resource limits and constraints to a nontechnical audience. This is
an experimental hands-on laboratory class, and our direction may shift
as the creative needs of the theatrical production evolve. Based on the
success of class projects and subsequent needs, some students may
be invited to continue in the winter term with a research appointment
(for pay or credit) to operate the system you have built and instruct
actors and creative professionals how to work with the system through
rehearsals and the final performance before spring break. Prerequisites:
CS110 or EE102A. Recommended: familiarity with Linux, C++, and Git.
Same as: EE 192T

CS 350. Secure Compilation. 3 Units.
This course explores the field of secure compilation, which sits at the
intersection between security and programming languages. The course
covers the following topics: threat models for secure compilers, formal
criteria for secure compilers to adhere to, security relevance of secure
compilation criteria, security architectures employed to achieve secure
compilation, proof techniques for secure compilation with a focus on
backtranslation.

CS 351. Open Problems in Coding Theory. 3 Units.
Coding theory is the study of how to encode data to protect it from noise.
Coding theory touches CS, EE, math, and many other areas, and there
are exciting open problems at all of these frontiers. In this class, we will
explore these open problems by reading recent research papers and
thinking about some open problems together. Required work will involve
reading and presenting research papers, as well as working in small
groups at these open problems and presenting progress. (Solving an
open problem is not required!) Topics will depend on student interest
and may include locality, coded computation, index coding, interactive
communication, and group testing. Prerequisites: CS250 / EE387 or
EE388; or linear algebra and permission of the instructor.

CS 352. Pseudo-Randomness. 3-4 Units.
Pseudorandomness is the widely applicable theory of efficiently
generating objects that look random, despite being constructed
using little or no randomness. Since psudorandom objects can
replace uniformly distributed ones (in a well-defined sense), one may
view pseudorandomness as an extension of our understanding of
randomness through the computational lens. We will study the basic
tools pseudorandomness, such as limited independence, randomness
extractors, expander graphs, and pseudorandom generators. We will
also discuss the applications of pseudrandomness to derandomization,
cryptography and more. We will cover classic result as well as cutting-
edge techniques. Prerequisites: CS 154 and CS 161, or equivalents.

CS 354. Topics in Intractability: Unfulfilled Algorithmic Fantasies. 3 Units.
Over the past 45 years, understanding NP-hardness has been an
amazingly useful tool for algorithm designers. This course will expose
students to additional ways to reason about obstacles for designing
efficient algorithms. Topics will include unconditional lower bounds
(query- and communication-complexity), total problems, Unique Games,
average-case complexity, and fine-grained complexity. Prerequisites: CS
161 or equivalent. CS 254 recommended but not required.

CS 355. Advanced Topics in Cryptography. 3 Units.
Topics: Pseudo randomness, multiparty computation, pairing-based
and lattice-based cryptography, zero knowledge protocols, and new
encryption and integrity paradigms. May be repeated for credit.
Prerequisite: CS255.

CS 356. Topics in Computer and Network Security. 3 Units.
Research seminar covering foundational work and current topics in
computer and network security. Students will read and discuss published
research papers as well as complete an original research project in
small groups. Open to Ph.D. and masters students as well as advanced
undergraduate students. Prerequisites: While the course has no official
prerequisites, students need a mature understanding of software
systems and networks to be successful. We strongly encourage students
to first take CS155: Computer and Network Security.

CS 357. Advanced Topics in Formal Methods. 3 Units.
Topics vary annually. Recent offerings have covered the foundations
of static analysis, including decision procedures for important theories
(SAT, linear integer constraints, SMT solvers), model checking, abstract
interpretation, and constraint-based analysis. May be repeated for credit.

Stanford Bulletin 2020-21

22 Computer Science (CS)

CS 357S. Formal Methods for Computer Systems. 3 Units.
The complexity of modern computer systems requires rigorous and
systematic verification/validation techniques to evaluate their ability
to correctly and securely support application programs. To this end, a
growing body of work in both industry and academia leverages formal
methods techniques to solve computer systems challenges. This
course is a research seminar that will cover foundational work and
current topics in the application of formal methods-style techniques
(some possible examples include SAT/SMT, model checking, symbolic
execution, theorem proving, program synthesis, fuzzing) to reliable
and secure computer systems design. The course can be thought of
as an applied formal methods course where the application is reliable
and secure architecture, microarchitecture, and distributed systems
design. Prior formal methods experience is not necessary. Students
will read and discuss published research papers and complete an
original research project. Open to PhD and masters students as well as
advanced undergraduate students. Prerequisites: EE180 Digital Systems
Architecture or comparable course, or consent of instructor.

CS 358. Topics in Programming Language Theory. 3 Units.
Advanced material is often taught for the first time as a topics course,
perhaps by a faculty member visiting from another institution. May be
repeated for credit.

CS 358A. Programming Language Foundations. 3 Units.
This course introduces advanced formal systems and programming
languages as well as techniques to reason formally about them. Possible
systems of study include: the lambda calculus, System F, the Pi and
Spi calculi, simply-typed languages, security type systems for non-
interference, robust safety, linear types, ownership types, session types,
logical relations and semantic models etc.

CS 359. Topics in the Theory of Computation. 3 Units.
Advanced material is often taught for the first time as a topics course,
perhaps by a faculty member visiting from another institution. May be
repeated for credit.

CS 359A. Research Seminar in Complexity Theory. 3 Units.
A research seminar on computational complexity theory. The focus
of this year's offering will be on concrete complexity, a major strand
of research in modern complexity theory. We will cover fundamental
techniques and major results concerning basic models of computation
such as circuits, decision trees, branching problems, and halfspaces.

CS 360. Simplicity and Complexity in Economic Theory. 3-5 Units.
Technology has enabled the emergence of economic systems of formerly
inconceivable complexity. Nevertheless, some technology-related
economic problems are so complex that either supercomputers cannot
solve them in a reasonable time, or they are too complex for humans
to comprehend. Thus, modern economic designs must still be simple
enough for humans to understand, and must address computationally
complex problems in an efficient fashion. This topics course explores
simplicity and complexity in economics, primarily via theoretical models.
We will focus on recent advances. Key topics include (but are not
limited to) resource allocation in complex environments, communication
complexity and information aggregation in markets, robust mechanisms,
dynamic matching theory, influence maximization in networks, and the
design of simple (user-friendly) mechanisms. Some applications include
paired kidney exchange, auctions for electricity and for radio spectrum,
ride-sharing platforms, and the diffusion of information. Prerequisites:
Econ 203 or equivalent.
Same as: ECON 284

CS 361. Engineering Design Optimization. 3-4 Units.
Design of engineering systems within a formal optimization framework.
This course covers the mathematical and algorithmic fundamentals of
optimization, including derivative and derivative-free approaches for both
linear and non-linear problems, with an emphasis on multidisciplinary
design optimization. Topics will also include quantitative methodologies
for addressing various challenges, such as accommodating multiple
objectives, automating differentiation, handling uncertainty in
evaluations, selecting design points for experimentation, and principled
methods for optimization when evaluations are expensive. Applications
range from the design of aircraft to automated vehicles. Prerequisites:
some familiarity with probability, programming, and multivariable
calculus.
Same as: AA 222

CS 366. Computational Social Choice. 3 Units.
An in-depth treatment of algorithmic and game-theoretic issues in social
choice. Topics include common voting rules and impossibility results;
ordinal vs cardinal voting; market approaches to large scale decision
making; voting in complex elections, including multi-winner elections
and participatory budgeting; protocols for large scale negotiation
and deliberation; fairness in societal decision making;nalgorithmic
approaches to governance of modern distributed systems such as
blockchains and community-mediated social networks; opinion dynamics
and polarization. Prerequisites: algorithms at the level of 212 or CS 161,
probability at the level of 221, and basic game theory, or consent of
instructor.
Same as: MS&E 336

CS 368. Algorithmic Techniques for Big Data. 3 Units.
(Previously numbered CS 369G.) Designing algorithms for efficient
processing of large data sets poses unique challenges. This course will
discuss algorithmic paradigms that have been developed to efficiently
process data sets that are much larger than available memory. We
will cover streaming algorithms and sketching methods that produce
compact datanstructures, dimension reduction methods that preserve
geometric structure, efficient algorithms for numerical linear algebra,
graph sparsification methods, as well as impossibility results for these
techniques.

CS 369. Topics in Analysis of Algorithms. 3 Units.
Advanced material is often taught for the first time as a topics course,
perhaps by a faculty member visiting from another institution. May be
repeated for credit.

CS 369H. Hierarchies of Integer Programming Relaxations. 3 Units.
Mathematical programming relaxations of integer programming
formulations are a popular way to apply convex optimization techniques
to hard combinatorial optimization problems. Such relaxations can
be made closer to their integer programming counterparts by adding
constraints; a systematic way to achieve this is via hierarchies of
relaxations. Several such hierarchies are well-studied in the literature:
Lovasz-Schrijver, Sherali-Adams and the Parrilo-Lasserre sum-of-
squares (SoS) hierarchy. Recently, these hierarchies have received a lot
of attention due to their potential to make progress on long standing
algorithmic questions, and connections to various other areas such as
computational complexity, combinatorial and polynomial optimization,
quantum computing, proof complexity and so on. In this course we
will cover recent research results in this area for problems arising from
optimization, machine learning, computational complexity and more,
discussing both lower and upper bounds. Prerequisites: Mathematical
maturity (required), exposure to algorithms (strongly recommended), and
optimization (recommended).

CS 369L. Algorithmic Perspective on Machine Learning. 3 Units.
Many problems in machine learning are intractable in the worst case,
andnpose a challenge for the design of algorithms with provable
guarantees. In this course, we will discuss several success stories at
the intersection of algorithm design and machine learning, focusing on
devising appropriate models and mathematical tools to facilitate rigorous
analysis.

Stanford Bulletin 2020-21

Computer Science (CS) 23

CS 369M. Metric Embeddings and Algorithmic Applications. 3 Units.
Low distortion embeddings of finite metric spaces is a topic at the
intersection of mathematics and theoretical computer science. Much
progress in this area in recent years has been motivated by algorithmic
applications. Mapping complicated metrics of interest to simpler metrics
(normed spaces, trees, and so on) gives access to a powerful algorithmic
toolkit for approximation algorithms, online algorithms as well as for
efficient search and indexing of large data sets. In a different vein,
convex relaxations are a useful tool for graph partitioning problems;
central to the analysis are metric embedding questions for certainly
computationally defined metrics. In this course, we will see several
classical and recent results on metric embeddings with a focus on
algorithmic applications. Students will be expected to have a strong
background in algorithms and probability.

CS 371. Computational Biology in Four Dimensions. 3 Units.
Cutting-edge research on computational techniques for investigating
and designing the three-dimensional structure and dynamics of
biomolecules, cells, and everything in between. These techniques,
which draw on approaches ranging from physics-based simulation to
machine learning, play an increasingly important role in drug discovery,
medicine, bioengineering, and molecular biology. Course is devoted
primarily to reading, presentation, discussion, and critique of papers
describing important recent research developments. Prerequisite: CS
106A or equivalent, and an introductory course in biology or biochemistry.
Recommended: some experience in mathematical modeling (does not
need to be a formal course).
Same as: BIOMEDIN 371, BIOPHYS 371, CME 371

CS 372. Artificial Intelligence for Disease Diagnosis and Information
Recommendations. 3 Units.
Artificial intelligence, specifically deep learning, stands out as one
of the most transformative technologies of the past decade. AI can
already outperform humans in several computer vision and natural
language processing tasks. However, we still face some of the same
limitations and obstacles that led to the demise of the first AI boom
phase five decades ago. This research-oriented course will first review
and reveal the limitations (e.g., iid assumption on training and testing
data, voluminous training data requirement, and lacking interpretability)
of some widely used AI algorithms, including convolutional neural
networks (CNNs), transformers, reinforcement learning, and generative
adversarial networks (GANs). To address these limitations, we will then
explore topics including transfer learning for remedying data scarcity,
knowledge-guided multimodal learning for improving data diversity,
out of distribution generalization, attention mechanisms for enabling
Interpretability, meta learning, and privacy-preserving training data
management. The course will be taught through a combination of
lecture and project sessions. Lectures on specialized AI applications
(e.g., cancer/depression diagnosis and treatment, AI/VR for surgery,
and health education) will feature guest speakers from academia and
industry. Students will be assigned to work on an extensive project that
is relevant to their fields of study (e.g., CS, Medicine, and Data Science).
Projects may involve conducting literature surveys, formulating ideas,
and implementing these ideas. Example project topics are but not limited
to 1) knowledge guided GANs for improving training data diversity, 2)
disease diagnosis via multimodal symptom checking, and 3) fake and
biased news/information detection.

CS 373. Statistical and Machine Learning Methods for Genomics. 3 Units.
Introduction to statistical and computational methods for genomics.
Sample topics include: expectation maximization, hidden Markov model,
Markov chain Monte Carlo, ensemble learning, probabilistic graphical
models, kernel methods and other modern machine learning paradigms.
Rationales and techniques illustrated with existing implementations used
in population genetics, disease association, and functional regulatory
genomics studies. Instruction includes lectures and discussion of
readings from primary literature. Homework and projects require
implementing some of the algorithms and using existing toolkits for
analysis of genomic datasets.
Same as: BIO 268, BIOMEDIN 245, STATS 345

CS 375. Large-Scale Neural Network Modeling for Neuroscience. 1-3
Unit.
Introduction to designing, building, and training large-scale neural
networks for modeling brain and behavioral data, including: deep
convolutional neural network models of sensory systems (vision,
audition, somatosensation); variational and generative methods for
neural interpretation; recurrent neural networks for dynamics, memory
and attention; interactive agent-based deep reinforcement learning
for cognitive modeling; and methods and metrics for comparing
such models to real-world neural data. Attention will be given both to
established methods as well as cutting-edge techniques. Students
will learn conceptual bases for deep neural network models and will
also implement learn to implement and train large-scale models in
Tensorflow using GPUs. Requirements: Fluency in Unix shell and Python
programming; familiarity with differential equations, linear algebra,
and probability theory; priori experience with modern machine learning
concepts (e.g. CS229) and basic neural network training tools (eg.
CS230 and/or CS231n). Prior knowledge of basic cognitive science or
neuroscience not required but helpful.
Same as: PSYCH 249

CS 377. Topics in Human-Computer Interaction. 2-3 Units.
Contents change each quarter. May be repeated for credit. See http://
hci.stanford.edu/academics for offerings.

CS 377E. Designing Solutions to Global Grand Challenges. 3-4 Units.
In this course we creatively apply information technologies to collectively
attack Global Grand Challenges (e.g., global warming, rising healthcare
costs and declining access, and ensuring quality education for all).
Interdisciplinary student teams will carry out need-finding within a target
domain, followed by brainstorming to propose a quarter long project.
Teams will spend the rest of the quarter applying user-centered design
methods to rapidly iterate through design, prototyping, and testing of
their solutions. This course will interweave a weekly lecture with a weekly
studio session where students apply the techniques hands-on in a small-
scale, supportive environment.

CS 377G. Designing Serious Games. 3-4 Units.
Over the last few years we have seen the rise of "serious games" to
promote understanding of complex social and ecological challenges, and
to create passion for solving them. This project-based course provides
an introduction to game design principals while applying them to games
that teach. Run as a hands-on studio class, students will design and
prototype games for social change and civic engagement. We will learn
the fundamentals of games design via lecture and extensive reading in
order to make effective games to explore issues facing society today.
The course culminates in an end-of- quarter open house to showcase our
games. Prerequisite: CS147 or equivalent. 247G recommended, but not
required.

Stanford Bulletin 2020-21

24 Computer Science (CS)

CS 377N. Introduction to the Design of Smart Products. 3-4 Units.
This course will focus on the technical mechatronic skills as well as the
human factors and interaction design considerations required for the
design of smart products and devices. Students will learn techniques
for rapid prototyping of smart devices, best practices for physical
interaction design, fundamentals of affordances and signifiers, and
interaction across networked devices. Students will be introduced to
design guidelines for integrating electrical components such as PCBs
into mechanical assemblies and consider the physical form of devices,
not just as enclosures but also as a central component of the smart
product. Prerequisites include: CS106A and E40 highly recommended, or
instructor approval.
Same as: ME 216M

CS 377P. Advanced User Interface Design Patterns. 3 Units.
User interface design is about creating the most effective, intuitive design
possible to help users achieve a specific goal. While understanding users
is one part of the equation, the other part is a strong understanding of
user interface design rules and patterns that you can apply to solve
their needs. This course will deep dive into user interface design across
mobile, desktop, and wearable platforms covering common patterns,
when to use them, and when to break them. Each week will cover a
different user interface design challenge and explore the patterns in areas
such as data input, search & filters, tables and lists, content organization,
navigation, dark patterns and more. Through the use of in class exercises,
integrated design challenges, and an exploration of examples, students
will leave the class knowing how to integrate user interface patterns
into their design work to create powerful, effective digital experiences.
Prerequisite: CS 147 or equivalent. 247 recommended but not required.

CS 377Q. Designing for Accessibility. 3-4 Units.
Designing for accessibility is a valuable and important skill in the UX
community. As businesses are becoming more aware of the needs and
scope of people with some form of disability, the benefits of universal
design, where designing for accessibility ends up benefitting everyone,
are becoming more apparent. This class introduces fundamental
Human Computer Interaction (HCI) concepts and skills in designing
for accessibility. Student projects will identify an accessibility need,
prototype a design solution, and conduct a user study with a person with
a disability. Prerequisites: Background in human-centered design (e.g.,
CS 147, CS 247, ME 115A, or a d.school class) is required. Web or mobile
programming experience (e.g., CS 142), or experience with qualitative
user studies may be helpful. The class involves team design projects and
prototyping.

CS 377T. Topics in Human-Computer Interaction: Teaching Studio
Classes. 3 Units.
Studio teaching is a practice that dates back to the apprentice days of
art studios. In this course, you will learn to teach project based classes
that include critique. We will also cover effective coaching, design of
projects and exercises, and curating material in order to maximize the
effectiveness of a flipped classroom. Recommended for TAs in HCI.

CS 377U. Understanding Users. 3-4 Units.
This project-based class focuses on understanding the use of technology
in the world. Students will learn generative and evaluative research
methods to explore how systems are appropriated into everyday life
in a quarter-long project where they design, implement and evaluate a
novel mobile application. Quantitative (e.g. A/B testing, instrumentation,
analytics, surveys) and qualitative (e.g. diary studies, contextual inquiry,
ethnography) methods and their combination will be covered along
with practical experience applying these methods in their project.
Prerequisites: CS 147, 193A/193P (or equivalent mobile programming
experience).

CS 379. Interdisciplinary Topics. 3 Units.
Advanced material is often taught for the first time as a topics course,
perhaps by a faculty member visiting from another institution. May be
repeated for credit.

CS 379C. Computational Models of the Neocortex. 3 Units.
This class focuses on building agents that achieve human-level
performance in specialized technical domains and are adept at
collaborating with humans using natural language. We draw upon
research in cognitive and systems neuroscience to take advantage of
what is known about how humans communicate and solve problems in
order to design advanced artificial neural network architectures. For more
detail, see http://www.stanford.edu/class/cs379c/ with special attention
to the CALENDAR and DISCUSSION tabs from past classes available by
following the ARCHIVES link.

CS 384. Seminar on Ethical and Social Issues in Natural Language
Processing. 3-4 Units.
Seminar covering issues in natural language processing related to
ethical and social issues and the overall impact of these algorithms on
people and society. Topics include: bias in data and models, privacy
and computational profiling, measuring civility and toxicity online,
computational propaganda, manipulation and framing, fairness/equity,
power, recommendations and filter bubbles, applications to social good,
and philosophical foundations of ethical investigation. Prerequisites: CS
224N and 224U.

CS 390A. Curricular Practical Training. 1 Unit.
Educational opportunities in high technology research and development
labs in the computing industry. Qualified computer science students
engage in internship work and integrate that work into their academic
program. Students register under their faculty advisor during the quarter
they are employed and complete a research report outlining their work
activity, problems investigated, results, and follow-on projects they expect
to perform. CS390A, CS390B, and CS390C may each be taken once.

CS 390B. Curricular Practical Training. 1 Unit.
Educational opportunities in high technology research and development
labs in the computing industry. Qualified computer science students
engage in internship work and integrate that work into their academic
program. Students register under their faculty advisor during the quarter
they are employed and complete a research report outlining their work
activity, problems investigated, results, and follow-on projects they expect
to perform. CS390A, CS390B, and CS390C may each be taken once.

CS 390C. Curricular Practical Training. 1 Unit.
Educational opportunities in high technology research and development
labs in the computing industry. Qualified computer science students
engage in internship work and integrate that work into their academic
program. Students register under their faculty advisor during the quarter
they are employed and complete a research report outlining their work
activity, problems investigated, results, and follow-on projects they expect
to perform. CS 390A, CS390B, and CS390C may each be taken once.

CS 390D. Part-time Curricular Practical Training. 1 Unit.
For qualified computer science PhD students only. Permission number
required for enrollment; see the CS PhD program administrator in Gates
room 195. Educational opportunities in high technology research and
development labs in the computing industry. Qualified computer science
PhD students engage in research and integrate that work into their
academic program. Students register under their faculty advisor during
the quarter they are employed and complete a research report outlining
their work activity, problems investigated, results, and follow-on projects
they expect to perform. Students on F1 visas should be aware that
completing 12 or more months of full-time CPT will make them ineligible
for Optional Practical Training (OPT).

CS 393. Computer Laboratory. 1-9 Unit.
For CS graduate students. A substantial computer program is designed
and implemented; written report required. Recommended as a
preparation for dissertation research. Register using the section number
associated with the instructor. Prerequisite: consent of instructor.

Stanford Bulletin 2020-21

Computer Science (CS) 25

CS 395. Independent Database Project. 1-6 Unit.
For graduate students in Computer Science. Use of database
management or file systems for a substantial application or
implementation of components of database management system.
Written analysis and evaluation required. Register using the section
number associated with the instructor. Prerequisite: consent of instructor.

CS 398. Computational Education. 4 Units.
This course covers cutting-edge education algorithms used to model
students, assess learning, and design widely deployable tools for open
access education. The goal of the course is for you to be ready to lead
your own computation education research project. Topics include
knowledge tracing, generative grading, teachable agents, and challenges
and opportunities implementing computational education in diverse
contexts around the world. The course will consist of group and individual
work and encourages creativity. Recommended: CS 142 and/or CS 221.
Prerequisites: CS 106B and 109.

CS 399. Independent Project. 1-9 Unit.
Letter grade only. This course is for masters students only.
Undergraduate students should enroll in CS199; PhD students should
enroll in CS499. Letter grade; if not appropriate, enroll in CS399P. Register
using the section number associated with the instructor. Prerequisite:
consent of instructor.

CS 399P. Independent Project. 1-9 Unit.
Graded satisfactory/no credit. This course is for masters students only.
Undergraduate students should enroll in CS199; PhD students should
enroll in CS499. S/NC only; if not appropriate, enroll in CS399. Register
using the section number associated with the instructor. Prerequisite:
consent of instructor.

CS 402. Beyond Bits and Atoms: Designing Technological Tools. 3-4
Units.
This course is a practicum in the design of technology-enabled curricula
and hands-on learning environments. It focuses on the theories,
concepts, and practices necessary to design effective, low-cost
educational technologies that support learning in all contexts for a variety
of diverse learners. We will explore theories and design frameworks
from constructivist and constructionist learning perspectives, as well
as the lenses of critical pedagogy, Universal Design for Learning (UDL),
and interaction design for children. The course will concretize theories,
concepts, and practices in weekly presentations (including examples)
from industry experts with significant backgrounds and proven expertise
in designing successful, evidence-based, educational technology
products. The Practicum provides the design foundation for EDUC 211 /
CS 402 L, a hands-on lab focused on introductory prototyping and the
fabrication of incipient interactive, educational technologies. (No prior
prototyping experience required.) Interested students must also register
for either EDUC 211 or CS 402L, complete the application at bit.ly/BBA-
Winter2020 by January 4 at 5 p.m., and come to the first class at 8:30
a.m. in CERAS 108.
Same as: EDUC 236

CS 402L. Beyond Bits and Atoms - Lab. 1-3 Unit.
This lab course is a hands-on introduction to the prototyping and
fabrication of tangible, interactive technologies, with a special focus
on learning and education. (No prior prototyping experience required.)
It focuses on the design and prototyping of low-cost technologies that
support learning in all contexts for a variety of diverse learners. You
will be introduced to, and learn how to use state-of-the-art fabrication
machines (3D printers, laser cutters, Go Go Boards, Sensors, etc.) to
design educational toolkits, educational toys, science kits, and tangible
user interfaces. The lab builds on the the theoretical and evidence-based
foundations explored in the EDUC 236 / CS 402 Practicum. Interested
students must also register for either EDUC 236 or CS 402, complete the
application at bit.ly/BBA-Winter2020 by January 4 at 5 p.m., and come to
the first class at 8:30 a.m. in CERAS 108.
Same as: EDUC 211

CS 41. Hap.py Code: The Python Programming Language. 2 Units.
This course is about the fundamentals and contemporary usage of the
Python programming language. The primary focus is on developing best
practices in writing Python and exploring the extensible and unique parts
of the Python language. Topics include: Pythonic conventions, data
structures such as list comprehensions, anonymous functions, iterables,
powerful built-ins (e.g. map, filter, zip), and Python libraries. For the last
few weeks, students will work with course staff to develop their own
significant Python project. Prerequisite: CS106B, CS106X, or equivalent.

CS 421. Designing AI to Cultivate Human Well-Being. 2 Units.
Artificial Intelligence (AI) has the potential to drive us towards a better
future for all of humanity, but it also comes with significant risks and
challenges. At its best, AI can help humans mitigate climate change,
diagnose and treat diseases more effectively, enhance learning, and
improve access to capital throughout the world. But it also has the
potential to exacerbate human biases, destroy trust in information
flow, displace entire industries, and amplify inequality throughout the
world. We have arrived at a pivotal moment in the development of the
technology in which we must establish a foundation for how we will
design AI to capture the positive potential and mitigate the negative risks.
To do this, building AI must be an inclusive, interactive, and introspective
process guided by an affirmative vision of a beneficial AI-future. The goal
of this interdisciplinary class is to bridge the gap between technological
and societal objectives: How do we design AI to promote human well-
being? The ultimate aim is to provide tools and frameworks to build
a more harmonious human society based on cooperation toward a
shared vision. Thus, students are trained in basic science to understand
what brings about the conditions for human flourishing and will create
meaningful AI technologies that aligns with the PACE framework: 1)
has a clear and meaningful purpose, 2) augments human dignity and
autonomy, 3) creates a feeling of inclusivity and collaboration, 4) creates
shared prosperity and a sense of forward movement (excellence). Toward
this end, students work in interdisciplinary teams on a final project
and propose a solution that tackles a significant societal challenge by
leveraging technology and frameworks on human thriving.

CS 422. Interactive and Embodied Learning. 3 Units.
Most successful machine learning algorithms of today use either
carefully curated, human-labeled datasets, or large amounts of
experience aimed at achieving well-defined goals within specific
environments. In contrast, people learn through their agency: they
interact with their environments, exploring and building complex mental
models of their world so as to be able to flexibly adapt to a wide variety
of tasks. One crucial next direction in artificial intelligence is to create
artificial agents that learn in this flexible and robust way. Students will
read and take turns presenting current works, and they will produce a
proposal of a feasible next research direction. Prerequisites: CS229,
CS231N, CS234 (or equivalent).
Same as: EDUC 234A

CS 428. Computation and Cognition: The Probabilistic Approach. 3 Units.
This course will introduce the probabilistic approach to cognitive science,
in which learning and reasoning are understood as inference in complex
probabilistic models. Examples will be drawn from areas including
concept learning, causal reasoning, social cognition, and language
understanding. Formal modeling ideas and techniques will be discussed
in concert with relevant empirical phenomena.
Same as: PSYCH 204

Stanford Bulletin 2020-21

26 Computer Science (CS)

CS 43. Functional Programming Abstractions. 2 Units.
This course covers the fundamentals of functional programming and
algebraic type systems, and explores a selection of related programming
paradigms and current research. Haskell is taught and used throughout
the course, though much of the material is applicable to other languages.
Material will be covered from both theoretical and practical points of view,
and topics will include higher order functions, immutable data structures,
algebraic data types, type inference, lenses and optics, effect systems,
concurrency and parallelism, and dependent types. Prerequisites:
Programming maturity and comfort with math proofs, at the levels of
CS107 and CS103.

CS 431. High-level Vision: From Neurons to Deep Neural Networks. 1-3
Unit.
Interdisciplinary seminar focusing on understanding how computations
in the brain enable rapid and efficient object perception. Covers topics
from multiple perspectives drawing on recent research in Psychology,
Neuroscience, and Computer Science. Emphasis on discussing recent
empirical findings, methods and theoretical debates in the field.
Same as: PSYCH 250

CS 448. Topics in Computer Graphics. 3-4 Units.
Topic changes each quarter. Recent topics: computational photography,
datanvisualization, character animation, virtual worlds, graphics
architectures, advanced rendering. See http://graphics.stanford.edu/
courses for offererings and prerequisites. May be repeated for credit.

CS 448B. Data Visualization. 3-4 Units.
Techniques and algorithms for creating effective visualizations based
on principles from graphic design, visual art, perceptual psychology,
and cognitive science. Topics: graphical perception, data and image
models, visual encoding, graph and tree layout, color, animation,
interaction techniques, automated design. Lectures, reading, and project.
Prerequisite: one of CS147, CS148, or equivalent.
Same as: SYMSYS 195V

CS 448H. Topics in Computer Graphics: Agile Hardware Design. 3 Units.
Topic changes each quarter. Recent topics: computational photography,
data visualization, character animation, virtual worlds, graphics
architectures, advanced rendering. See http://graphics.stanford.edu/
courses for offerings and prerequisites. May be repeated for credit.

CS 448I. Computational Imaging and Display. 3 Units.
Spawned by rapid advances in optical fabrication and digital
processing power, a new generation of imaging technology is emerging:
computational cameras at the convergence of applied mathematics,
optics, and high-performance computing. Similar trends are observed
for modern displays pushing the boundaries of resolution, contrast, 3D
capabilities, and immersive experiences through the co-design of optics,
electronics, and computation. This course serves as an introduction to
the emerging field of computational imaging and displays. Students will
learn to master bits and photons.
Same as: EE 367

CS 448M. Making Making Machines for Makers. 3-4 Units.
An introductory, project-based exploration of systems and processes for
making things using computer-aided design and manufacturing, and an
introduction to machines and machine tools. Emphasis will be placed
on building novel machines and related software for use by "makers"
and interactive machines. Course projects will encourage students to
understand, build and modify/hack a sequence of machines: (1) an
embroidery machine for custom textiles, (2) a paper cutting machine
(with drag knife) for ornamental design, and (3) an XY plotter with Arduino
controller. Through these projects students explore both (i) principles
of operation (mechanical, stepper motors and servos, electrical control,
computer software), and (ii) computer algorithms (trajectory, tool path,
design). Current trends in interactive machines will be surveyed. The
course will culminate in a final student-selected project. Prerequisite:
CS106A or equivalent programming experience. Students should have a
desire to make things.

CS 448P. Hacking the Pandemic. 3 Units.
This timely project-based course provides a venue for students to apply
their skills in computing and other areas to help people cope with the
Coronavirus Disease 2019 (CoViD-19) pandemic. In addition to brief
lectures, guest speakers, and moderated discussions and brainstorming
sessions, the course will primarily consist of self-organized team projects
where students find creative ways to contribute by leveraging any and all
computational tools at our disposal (e.g., algorithms, app development,
HCI, remote interaction and communication, data visualization, modeling
and simulation, fabrication and 3d printing, design, computer games, VR,
computer systems and networking, AI, statistics, bioinformatics, etc.).
Prerequisite: CS106B.

CS 448V. Topics in Computer Graphics: Computational Video
Manipulation. 3 Units.
The goal of this graduate (advanced undergraduate also welcome)
course is to survey recent work on computational video analysis and
manipulation techniques. We will learn how to acquire, represent, edit
and remix video. Several popular video manipulation algorithms will be
presented, with an emphasis on using these techniques to build practical
systems. Students will have the opportunity to acquire their own video
and implement the processing tools needed to computationally analyze
and manipulate it. The course will be project based with a substantial
final project.

CS 44N. Great Ideas in Graphics. 3 Units.
A hands-on interactive and fun exploration of great ideas from computer
graphics. Motivated by graphics concepts, mathematical foundations
and computer algorithms, students will explore an eccentric selection of
"great ideas" through short weekly programming projects. Project topics
will be selected from a diverse array of computer graphics concepts and
historical elements.

CS 468. Topics in Geometric Algorithms: Non-Euclidean Methods in
Machine Learning. 3 Units.
Contents of this course vary with each offering. Past offerings have
included geometric matching, surface reconstruction, collision detection,
computational topology., differential geometry for computer scientists,
computational symmetry and regularity, and data-driven shape analysis.
The 2020-21 offering will be on Non-Euclidean Methods in Machine
Learning. May be repeated for credit.nPrerequisites: Math 51 and 52 or
equivalent, basic coding.

CS 47. Cross-Platform Mobile Development. 2 Units.
The fundamentals of cross-platform mobile application development
using the React Native framework (RN). Primary focus on enabling
students to build apps for both iOS and Android using RN. Students
will explore the unique aspects that made RN a primary tool for mobile
development within Facebook, Instagram, Walmart, Tesla, and UberEats.
Skills developed over the course will be consolidated by the completion
of a final project. No required prerequisites. Website: web.stanford.edu/
class/cs47/. To enroll in the class, please fill the following application:
https://forms.gle/nDnuR3R6N9LozXUdA. The application deadline is
January 15th at 6:00 pm.

Stanford Bulletin 2020-21

Computer Science (CS) 27

CS 472. Data science and AI for COVID-19. 2 Units.
This project class investigates and models COVID-19 using tools from
data science and machine learning. We will introduce the relevant
background for the biology and epidemiology of the COVID-19 virus.
Then we will critically examine current models that are used to predict
infection rates in the population as well as models used to support
various public health interventions (e.g. herd immunity and social
distancing). The core of this class will be projects aimed to create tools
that can assist in the ongoing global health efforts. Potential projects
include data visualization and education platforms, improved modeling
and predictions, social network and NLP analysis of the propagation of
COVID-19 information, and behavior-nudging tools. The class is aimed
toward students with experience in data science and AI, and will include
guest lectures by biomedical experts. Prerequisites: background in
machine learning and statistics (CS229, STATS216 or equivalent). Some
biological background is helpful but not required.
Same as: BIODS 472, BIOMEDIN 472

CS 476A. Music, Computing, Design: The Art of Design. 3-4 Units.
Creative design for computer music software. Programming, audiovisual
design, as well as software design for musical tools, instruments, toys,
and games. Provides paradigms and strategies for designing and building
music software, with emphases on interactive systems, aesthetics,
and artful product design. Course work includes several programming
assignments and a "design+implement" final project. Prerequisite:
experience in C/C++ and/or Java.See https://ccrma.stanford.edu/
courses/256a/.
Same as: MUSIC 256A

CS 476B. Music, Computing, Design II: Virtual and Augmented Reality for
Music. 3-4 Units.
Aesthetics, design, and exploration of creative musical applications
of virtual reality (VR) and augmented reality (AR), centered around VR
and mobile technologies. Comparison between AR, VR, and traditional
software design paradigms for music. Topics include embodiment,
interaction design, novel instruments, social experience, software design
+ prototyping. Prerequisite: MUSIC 256A / CS 476A.
Same as: MUSIC 256B

CS 481. Digital Technology and Law: Foundations. 3 Units.
Taught by a team of law and engineering faculty, this unique
interdisciplinary course will empower students across the University to
work together and exercise leadership on critically important debates at
the intersection of law and digital technology. Designed as an accessible
survey, the course will equip students with two powerful bases of
knowledge: (i) a working technical grasp of key digital technologies (e.g.,
AI and machine learning, internet structure, encryption, blockchain);
and (ii) basic fluency in the key legal frameworks implicated by each
(e.g., privacy, cybersecurity, anti-discrimination, free speech, torts,
procedural fairness). Substantively, the course will be organized into
modules focused on distinct law-tech intersections, including: platform
regulation, speech, and intermediary liability; algorithmic bias and civil
rights; autonomous systems, safety, and tort liability; "smart" contracting;
data privacy and consumer protection; "legal tech," litigation, and
access to justice; government use of AI; and encryption and criminal
procedure. Each module will be explored via a mix of technical and legal
instruction, case study discussions, in-class practical exercises, and
guest speakers from industry, government, academe, and civil society.
Law students will emerge from the course with a basic understanding of
core digital technologies and related legal frameworks and a roadmap
of curricular and career pathways one might follow to pursue each area
further. Students from elsewhere in the University, from engineering
to business to the social sciences and beyond, will emerge with an
enhanced capacity to critically assess the legal and policy implications
of new digital technologies and the ways society can work to ensure
those technologies serve the public good. All students will learn to
work together across disciplinary divides to solve technical, legal, and
practical problems. There are no course prerequisites, and no prior legal
or technical training will be assumed. Students will be responsible for
short discussion papers or a final paper. After the term begins, students
electing the final paper option can transfer from section 1 to section
2, which meets the R requirement, with consent of the instructor. This
class is cross-listed in the University and undergraduates and graduates
are eligible to take it. Consent Application for Non-Law Students: We
will try to accommodate all students interested in the course. But
to facilitate planning and confirm interest, please fill out a consent
application (https://forms.gle/hLAQ7JUm2jFTWQzE9) by March 13,
2020. Applications received after March 13 will be considered on a rolling
basis. Elements used in grading: Attendance, Class Participation; Written
Assignments or Final Paper.

CS 499. Advanced Reading and Research. 1-15 Unit.
Letter grade only. Advanced reading and research for CS PhD students.
Register using the section number associated with the instructor.
Prerequisite: consent of instructor. This course is for PhD students only.
Undergraduate students should enroll in CS199, masters students should
enroll in CS399. Letter grade; if not appropriate, enroll in CS499P.

CS 499P. Advanced Reading and Research. 1-15 Unit.
Graded satisfactory/no credit. Advanced reading and research for CS
PhD students. Register using the section number associated with the
instructor. Prerequisite: consent of instructor. This course is for PhD
students only. Undergraduate students should enroll in CS199, masters
students should enroll in CS399. S/NC only; if not appropriate, enroll in
CS499.

Stanford Bulletin 2020-21

28 Computer Science (CS)

CS 49N. Using Bits to Control Atoms. 3 Units.
This is a crash course in how to use a stripped-down computer system
about the size of a credit card (the rasberry pi computer) to control as
many different sensors as we can implement in ten weeks, including
LEDs, motion sensors, light controllers, and accelerometers. The ability
to fearlessly grab a set of hardware devices, examine the data sheet
to see how to use it, and stitch them together using simple code is a
secret weapon that software-only people lack, and allows you to build
many interesting gadgets. We will start with a "bare metal'' system --- no
operating system, no support --- and teach you how to read device data
sheets describing sensors and write the minimal code needed to control
them (including how to debug when things go wrong, as they always do).
This course differs from most in that it is deliberately mostly about what
and why rather than how --- our hope is that the things you are able at the
end will inspire you to follow the rest of the CS curriculum to understand
better how things you've used work. Prerequisites: knowledge of the C
programming language. A Linux or Mac laptop that you are comfortable
coding on.

CS 50. Using Tech for Good. 2 Units.
Students in the class will work in small teams to implement high-impact
projects for partner organizations. Taught by the CS+Social Good team,
the aim of the class is to empower you to leverage technology for social
good by inspiring action, facilitating collaboration, and forging pathways
towards global change. Recommended: CS 106B, CS 42 or 142. Class is
open to students of all years. May be repeated for credit. Cardinal Course
certified by the Haas Center.

CS 51. CS + Social Good Studio: Designing Social Impact Projects. 2
Units.
Get real-world experience researching and developing your own social
impact project! Students work in small teams to develop high-impact
projects around problem domains provided by partner organizations,
under the guidance and support of design/technical coaches from
industry and non-profit domain experts. Main class components are
workshops, community discussions, guest speakers and mentorship.
Studio provides an outlet for students to create social change through
CS while engaging in the full product development cycle on real-world
projects. The class culminates in a showcase where students share their
project ideas and Minimum Viable Product prototypes with stakeholders
and the public. Application required; please see cs51.stanford.edu for
more information.

CS 52. CS + Social Good Studio: Implementing Social Good Projects. 2
Units.
Continuation of CS51 (CS + Social Good Studio). Teams enter the quarter
having completed and tested a minimal viable product (MVP) with a well-
defined target user, and a community partner. Students will learn to apply
scalable technical frameworks, methods to measure social impact, tools
for deployment, user acquisition techniques and growth/exit strategies.
The purpose of the class is to facilitate students to build a sustainable
infrastructure around their product idea. CS52 will host mentors, guest
speakers and industry experts for various workshops and coaching-
sessions. The class culminates in a showcase where students share their
projects with stakeholders and the public. Prerequisite: CS 51, or consent
of instructor.

CS 520. Knowledge Graphs. 1 Unit.
Knowledge graphs have emerged as a compelling abstraction for
organizing world'snstructured knowledge over the internet, capturing
relationships among key entities ofninterest to enterprises, and a
way to integrate information extracted from multiplendata sources.
Knowledge graphs have also started to play a central role in machine
nlearning and natural language processing as a method to incorporate
world knowledge, as a target knowledge representation for extracted
knowledge, and for explaining what is being learned. This class is a
graduate level research seminar featuring prominent researchers and
industry practitioners working on different aspects of knowledge graphs.
It will showcase how latest research in AI, database systems and HCI
is coming together in integrated intelligent systems centered around
knowledge graphs.

CS 521. Seminar on AI Safety. 1 Unit.
In this seminar, we will focus on the challenges in the design of safe and
verified AI-based systems. We will explore some of the major problems in
this area from the viewpoint of industry and academia. We plan to have
a weekly seminar speaker to discuss issues such as verification of AI
systems, reward misalignment and hacking, secure and attack-resilient
AI systems, diagnosis and repair, issues regarding policy and ethics, as
well as the implications of AI safety in automotive industry. Prerequisites:
There are no official prerequisites but an introductory course in artificial
intelligence is recommended.

CS 522. Seminar in Artificial Intelligence in Healthcare. 1 Unit.
Artificial intelligence is poised to make radical changes in healthcare,
transforming areas such as diagnosis, genomics, surgical robotics,
and drug discovery. In the coming years, artificial intelligence has the
potential to lower healthcare costs, identify more effective treatments,
and facilitate prevention and early detection of diseases. This class
is a seminar series featuring prominent researchers, physicians,
entrepreneurs, and venture capitalists, all sharing their thoughts on the
future of healthcare. We highly encourage students of all backgrounds to
enroll (no AI/healthcare background necessary). Speakers and more at
shift.stanford.edu/healthai.

CS 529. Robotics and Autonomous Systems Seminar. 1 Unit.
Seminar talks by researchers and industry professionals on topics related
to modern robotics and autonomous systems. Broadly, talks will cover
robotic design, perception and navigation, planning and control, and
learning for complex robotic systems. May be repeated for credit.
Same as: AA 289

CS 544. INTERACTIVE MEDIA AND GAMES. 1 Unit.
Interactive media and games increasingly pervade and shape our society.
In addition to their dominant roles in entertainment, video games play
growing roles in education, arts, and science. This seminar series brings
together a diverse set of experts to provide interdisciplinary perspectives
on these media regarding their history, technologies, scholarly research,
industry, artistic value, and potential future.
Same as: BIOE 196, BIOPHYS 196

CS 547. Human-Computer Interaction Seminar. 1 Unit.
Weekly speakers on human-computer interaction topics. May be repeated
for credit.

CS 549. Human-Computer Interaction in the Real World. 1 Unit.
Intended for students who are pursuing a focus on HCI, this course
focuses on showing students how HCI gets applied in industry across
different types of companies. The course consists of on-site visits to
large companies (for example Google, Yahoo, Square, Tesla) and to
startups to talk to the HCI practitioners at these companies and learn first
hand how HCI and design fits in at different companies. The objective of
this class is to have students understand how HCI practitioners fit into
organizations, the roles they play, and what skills they need in the real
world to be able to do their magic.

Stanford Bulletin 2020-21

Computer Science (CS) 29

CS 56N. Great Discoveries and Inventions in Computing. 3 Units.
This seminar will explore some of both the great discoveries that underlie
computer science and the inventions that have produced the remarkable
advances in computing technology. Key questions we will explore include:
What is computable? How can information be securely communicated?
How do computers fundamentally work? What makes computers fast?
Our exploration will look both at the principles behind the discoveries and
inventions, as well as the history and the people involved in those events.
Some exposure to programming is required.

CS 571. Surgical Robotics Seminar. 1 Unit.
Surgical robots developed and implemented clinically on varying scales.
Seminar goal is to expose students from engineering, medicine, and
business to guest lecturers from academia and industry. Engineering and
clinical aspects connected to design and use of surgical robots, varying
in degree of complexity and procedural role. May be repeated for credit.
Same as: ME 571

CS 57N. Randomness: Computational and Philosophical Approaches. 3
Units.
Is it ever reasonable to make a decision randomly? For example, would
you ever let an important choice depend on the flip of a coin? Can
randomness help us answer difficult questions more accurately or more
efficiently? What is randomness anyway? Can an object be random? Are
there genuinely random processes in the world, and if so, how can we
tell? In this seminar, we will explore these questions through the lenses of
philosophy and computation. By the end of the quarter students should
have an appreciation of the many roles that randomness plays in both
humanities and sciences, as well as a grasp of some of the key analytical
tools used to study the concept. The course will be self-contained, and no
prior experience with randomness/probability is necessary.
Same as: PHIL 3N

CS 58. You Say You Want a Revolution. 2 Units.
This project-based course will give creative students an opportunity
to work together on revolutionary change leveraging blockchain
technology. The course will provide opportunities for students to
become operationally familiar with blockchain concepts, supported by
presentation of blockchain fundamentals at a level accessible to those
with or without a strong technical background. Specific topics include:
incentives, ethics, crypto-commons, values, FOMO 3D, risks, implications
and social good. Students will each discover a new possible use-case
for blockchain and prototype their vision for the future accordingly.
Application and impact areas may come from medicine, law, economics,
history, anthropology, or other sectors. Student diversity of background
will be valued highly.
Same as: Blockchain Edition

CS 581. Media Innovation. 1 Unit.
This course will introduce students interested in computer science,
engineering, and media to what is possible and probable when it comes
to media innovation. Speakers from multiple disciplines and industry
will discuss a range of topics in the context of evolving media with a
focus on the technical trends, opportunities and challenges surfacing in
the unfolding media ecosystem. Speakers will underscore the need to
innovate to survive in the media and information industries. Open to both
undergraduates and graduate students.

CS 58N. The Blockchain Revolution Will Not Be Televised. 3 Units.
This seminar will explore the nature of revolutions supported and enabled
by technological change, using the Internet and smart phone as two
historical examples and focusing on blockchain technology and potential
applications such as money, banking, supply chain and market trading.
In this project-based course, one meeting per week will bring in new
information, including visiting experts. Other class meetings will involve
team work, presentations, and discussion. Each student will help lead a
section; the class collectively will produce a final book/movie/blog, in a
medium selected by the class.

CS 7. Personal Finance for Engineers. 1 Unit.
Introduction to the fundamentals and analysis specifically needed by
engineers to make informed and intelligent financial decisions. Course
will focus on actual industry-based financial information from technology
companies and realistic financial issues. Topics include: behavioral
finance, budgeting, debt, compensation, stock options, investing and real
estate. No prior finance or economics experience required.

CS 802. TGR Dissertation. 0 Units.
Terminal Graduate Registration (TGR). CS PhD students who have their
TGR form approved should register under the section number associated
with their faculty advisor.

CS 80Q. Race and Gender in Silicon Valley. 3 Units.
Join us as we go behind the scenes of some of the big headlines about
trouble in Silicon Valley. We'll start with the basic questions like who
decides who gets to see themselves as "a computer person," and how
do early childhood and educational experiences shape our perceptions
of our relationship to technology? Then we'll see how those questions
are fundamental to a wide variety of recent events from #metoo in tech
companies, to the ways the under-representation of women and people
of color in tech companies impacts the kinds of products that Silicon
Valley brings to market. We'll see how data and the coming age of AI raise
the stakes on these questions of identity and technology. How can we
ensure that AI technology will help reduce bias in human decision-making
in areas from marketing to criminal justice, rather than amplify it?.
Same as: AFRICAAM 80Q

CS 81SI. AI Interpretability and Fairness. 1 Unit.
As black-box AI models grow increasingly relevant in human-centric
applications, explainability and fairness becomes increasingly necessary
for trust in adopting AI models. This seminar class introduces students
to major problems in AI explainability and fairness, and explores key
state-of-theart methods. Key technical topics include surrogate methods,
feature visualization, network dissection, adversarial debiasing, and
fairness metrics. There will be a survey of recent legal and policy trends.
Each week a guest lecturer from AI research, industry, and related policy
fields will present an open problem and solution, followed by a roundtable
discussion with the class. Students have the opportunity to present a
topic of interestnor application to their own projects (solo or in teams)
in the final class. Code examples of each topic will be provided for
students interested in a particular topic, but there will be no required
coding components. Students who will benefit most from this class have
exposure to AI, such as through projects and related coursework (e.g.
statistics, CS221, CS230, CS229). Students who are pursuing subjects
outside of the CS department (e.g. sciences, social sciences, humanities)
with sufficient mathematical maturity are welcomed to apply. Enrollment
limited to 20.

CS 82SI. Wellness in Tech: Designing an Intentional Lifestyle in a Tech-
Driven World. 1 Unit.
Would deleting Facebook make us all happier? Of the 16 hours we
spend awake each day on average, over 11 of those hours are spent
interacting with digital media. In an always-on, tech-driven world, how
do we regain control over our wellbeing?nThis 1 unit course is part
workshop, part seminar, with a focus on tackling and re-framing the
relationship between technology and wellness. What are the principles
of human flourishing, and what is technology's role in promoting them?
How can self-compassion and an appreciation for diversity lead to the
development of products that enhance our collective happiness? Using
human-centered design thinking, we will explore how technology both
propels and hinders us- as individuals and as a society. By the end of
this course, you will have tangible insights and methods to regain control
over your relationship with technology. No coding involved; however we
will be deeply exploring the human operating system. Students from all
programs and areas of study are encouraged to apply.

Stanford Bulletin 2020-21

30 Computer Science (CS)

CS 83. Playback Theater. 3 Units.
Playback combines elements of theater, community work and
storytelling. In a playback show, a group of actors and musicians create
an improvised performance based on the audience's personal stories. A
playback show brings about a powerful listening and sharing experience.
During the course, we will tell, listen, play together, and train in playback
techniques. We will write diaries to process our experience in the context
of education and research. The course is aimed to strengthen listening
abilities, creativity and the collaborative spirit, all integral parts of doing
great science. In playback, as in research, we are always moving together,
from the known, to the unknown, and back. There is limited enrollment for
this class. Application is required.

CS 84. Emotional Intelligence. 2 Units.
This hands-on course is aimed at Stanford engineers who wish to be
successful in start-ups or engineering-focused organizations. It is based
on decades of observations by the instructors, witnessing that fresh
graduates routinely struggle to survive and create an impact in the
corporate world. A key objective is for students to develop a basic set
of skills to master day-to-day personal interactions, and to understand
the dynamics of work environments. The course then aims to guide
students with more complex tasks, such as how to run effective meetings
or how to work in multi-disciplinary teams. Whether you wish to become
a start-up founder and CEO; a manager at a tech-centric company; or an
individual contributor at Facebook or Google: if you wish to hit the ground
running and be highly effective from your first day at work, this course is
for you!.

CS 9. Problem-Solving for the CS Technical Interview. 1 Unit.
This course will prepare students to interview for software engineering
and related internships and full-time positions in industry. Drawing on
multiple sources of actual interview questions, students will learn key
problem-solving strategies specific to the technical/coding interview.
Students will be encouraged to synthesize information they have learned
across different courses in the major. Emphasis will be on the oral and
combination written-oral modes of communication common in coding
interviews, but which are unfamiliar settings for problem solving for many
students. Prerequisites: CS 106B or X.

CS 91SI. Digital Canvas: An Introduction to UI/UX Design. 2 Units.
Become familiar with prototype-design tools like Sketch and Marvel while
also learning important design concepts in a low-stress environment.
Focus is on the application of UI/UX design concepts to actual user
interfaces: the creation of wireframes, high-fidelity mockups, and
clickable prototypes. We will look at what makes a good or bad user
interface, effective design techniques, and how to employ these
techniques using Sketch and Marvel to make realistic prototypes. This
course is ideal for anyone with little to no visual design experience who
would like to build their skill set in UI/UX for app or web design. Also
ideal for anyone with experience in front or back-end web development
or human-computer interaction that would want to sharpen their visual
design and analysis skills for UI/UX.

CS 93. Teaching AI. 1 Unit.
For graduate students who are TA-ing an AI course. This course prepares
new AI section leaders to teach, write, and evaluate AI content. In class,
you will be evaluating final projects individually and as a group. You will
have discussions criticizing papers and assigning grades to them. You
will analyze and solve discussion session problems on the board, explain
algorithmsnlike backpropagation, and learn how to give constructive
feedback to students. The class will also include a guest speaker who
will give teaching advice and talk about AI. Focus is on teaching skills,
techniques, and final projects grading. The class meets once a week for
the first 6 weeks of the quarter.

Stanford Bulletin 2020-21

