MATHEMATICAL AND COMPUTATIONAL SCIENCE

Courses offered by Mathematical and Computational Science program are listed under the subject code MCS on the Stanford Bulletin's ExploreCourses (http://explorecourses.stanford.edu/) website.

This interdisciplinary undergraduate degree program in MCS is sponsored by Stanford's departments of Statistics, Mathematics, Computer Science, and Management Science & Engineering, providing students with a core of mathematics basic to all the mathematical sciences and an introduction to concepts and techniques of computation, optimal decision making, probabilistic modeling, and statistical inference.

Utilizing the faculty and courses of the departments listed above, this major prepares students for graduate study or employment in the mathematical and computational sciences or in those areas of applied mathematics which center around the use of computers and are concerned with the problems of the social and management sciences. A biology option is offered for students interested in applications of mathematics, statistics, and computer science to the biological sciences (bioinformatics, computational biology, statistical genetics, neurosciences); and in a similar spirit, an engineering and statistics option.

Undergraduate Mission Statement for Mathematical and Computational Science

The mission of the Mathematical and Computational Science Program is to provide students with a core of mathematics basic to all the mathematical sciences and an introduction to concepts and techniques of computation, optimal decision making, probabilistic modeling and statistical inference. The program is interdisciplinary in its focus, and students are required to complete course work in mathematics, computer science, statistics, and management science and engineering. A computational biology track is available for students interested in biomedical applications. The program prepares students for careers in academic, financial and government settings as well as for study in graduate or professional schools.

Learning Outcomes

The program expects undergraduate majors to be able to demonstrate the following learning outcomes. These learning outcomes are used in evaluating students and the department's undergraduate program. Students are expected to be able to demonstrate:

- 1. understanding of principles and tools of statistics.
- 2. command of optimization and its applications and the ability to analyze and interpret problems from various disciplines.
- 3. an understanding of computer applications emphasizing modern software engineering principles.
- an understanding of multivariate calculus, linear algebra, and algebraic and geometric proofs.

Bachelor of Science in Mathematical and Computational Science

The Program in Mathematical and Computational Science (MCS) offers a Bachelor of Science in Mathematical and Computational Science. Eligible students may also pursue a Bachelor of Science with Honors (p. 4). The department also offers a minor in Mathematical and Computational Science (p. 5).

Suggested Preparation for the Major

Students ordinarily would have taken two of the required Math courses (MATH 51 Linear Algebra, Multivariable Calculus, and Modern Applications/MATH 52 Integral Calculus of Several Variables/MATH 53 Ordinary Differential Equations with Linear Algebra) and one of the required Statistics core courses (STATS 116 Theory of Probability, STATS 191 Introduction to Applied Statistics) before declaring MCS during their freshman or sophomore year.

How to Declare the Major

To declare the major, a student should first meet with an MCS peer advisor to create a proposed study plan and then with the MCS student services officer to discuss the major. Students ordinarily have taken two of the required MATH 50 series courses and a core Statistics course prior to declaration. Once the student has created a proposed study plan, they should connect with the MCS student services officer and declare the major through Axess. Students should have an overall grade point average (GPA) of 3.0 to declare.

Degree Requirements

- The student must have a grade point average (GPA) of 3.0 or better in all course work used to fulfill the major requirement.
- At least three quarters before graduation, majors must file with their advisor a plan for completing degree requirements.
- All courses used to fulfill major requirements must be taken for a letter grade with the exception of courses offered satisfactory/no credit only.
- Students who earn less than a 'C+' in STATS 116 Theory of Probability or STATS 200 Introduction to Statistical Inference must repeat the course.
- Only one MCS core course can be substituted by filing a petition
 with their advisor (with the exception of STATS 200 Introduction
 to Statistical Inference which cannot be substituted). The Course
 Substitution Form (https://mcs.stanford.edu/sites/mcs/files/media/
 file/mcs-course-sub-1819.pdf)must be submitted the quarter prior to
 enrolling in the course.
- Course transfer credit is subject to department evaluation and to the
 Office of the Registrar's external credit evaluation. These courses
 may result in a replacement course for MCS required course or may
 establish placement in a higher-level course. Transfer requests must
 first be submitted to Student Services Center prior to being evaluated
 by your advisor. Submit the MCS Program Transfer Credit Form
 (https://mcs.stanford.edu/academicsmajor/transfer-credit-mcsdeclared-students/) to the student services office.
- Students may take their three electives courses for credit (CR).
- Students may be granted a one-time exception to take a core course for credit (CR) with the exception of STATS 116 and STATS 200.
- The University requires students to complete at least one approved writing-intensive course in each of their majors. See the Hume Center for Writing and Speaking (https://undergrad.stanford.edu/ tutoring-support/hume-center/writing/undergraduate-students/ writing-major-resources/) web site for a full description of the WIM (https://undergrad.stanford.edu/programs/pwr/courses/writingmajor/)requirement.

Course Requirements

oodioc nequiren		Units
Mathematics (MATH))	28
Single-variable calcul	lus or AP credit. ¹	
MATH 19	Calculus	3
MATH 20	Calculus	3
MATH 21	Calculus	4
Students may choose	e one of the following sequences:	15
Multivariable Calculu	s and Linear Algebra	
MATH 51	Linear Algebra, Multivariable Calculus, and Modern Applications	
MATH 52	Integral Calculus of Several Variables	
MATH 53	Ordinary Differential Equations with Linear Algebra	
Modern Mathematics sequence)	s: Continuous Methods (a proof-oriented	
MATH 61CM	Modern Mathematics: Continuous Methods	
MATH 62CM	Modern Mathematics: Continuous Methods	
MATH 63CM	Modern Mathematics: Continuous Methods	
Modern Mathematics sequence)	s: Discrete Methods (a proof-oriented	
MATH 61DM	Modern Mathematics: Discrete Methods	
MATH 62DM	Modern Mathematics: Discrete Methods	
MATH 63DM	Modern Mathematics: Discrete Methods	
Select one of the follo	owing:	3
MATH 104	Applied Matrix Theory	
MATH 113	Linear Algebra and Matrix Theory	
Computer Science (C	S)	22-25
CS 103	Mathematical Foundations of Computing	5
CS 106A	Programming Methodology	5
and either		
CS 106B	Programming Abstractions	5
or CS 106X	Programming Abstractions	
Select two of the follo	_	7-10
CME 108	Introduction to Scientific Computing	
CS 107	Computer Organization and Systems	
CS 154	Introduction to the Theory of Computation	
CS 161	Design and Analysis of Algorithms	
CS 181W	Computers, Ethics, and Public Policy	
CS 182W	Ethics, Public Policy, and Technological Change	
	e and Engineering (MS&E)	7-11
MS&E 211X	Introduction to Optimization (Accelerated)	3-4
MS&E 221	Stochastic Modeling	3
Or select three of the	-	9-11
MS&E 111	Introduction to Optimization	
MS&E 121	Introduction to Stochastic Modeling	
MS&E 211	Introduction to Optimization	
MS&E 213	Introduction to Optimization Theory	
MS&E 221	Stochastic Modeling	
MS&E 251	Introduction to Stochastic Control with Applications	
Statistics (STATS)		10-11
STATS 116	Theory of Probability	3-4
or MATH 151	Introduction to Probability Theory	
STATS 200	Introduction to Statistical Inference	4
Select one of the follo	owing:	3

	STATS 191	Introduction to Applied Statistics	
	STATS 203	Introduction to Regression Models and Analysis of Variance	
V	Vriting in the Major (•	3-5
		MCS-designated WIM courses to fulfill the	
	Vriting in the Major r	requirement:	
	MATH 109	Applied Group Theory	
	MATH 110	Applied Number Theory and Field Theory	
	MATH 120	Groups and Rings	
	MATH 171	Fundamental Concepts of Analysis	
	CS 181W	Computers, Ethics, and Public Policy	
	CS 182W	Ethics, Public Policy, and Technological Change	
	STATS 155	Modern Statistics for Modern Biology	
8	specific concentration pproval required.	by other majors may be used in cases of ons (e.g. biology, decision theory). Advisor omputational Science Approved Electives	9
		s in Mathematical and Computational	9
		above, at least 3 units each from two	
	lifferent department	·	
(Choose three elective	es:	
	ECON 102C	Advanced Topics in Econometrics	
	ECON 140	Introduction to Financial Economics	
	ECON 160	Game Theory and Economic Applications	
	ECON 179	Experimental Economics	
	EE 261	The Fourier Transform and Its Applications	
	EE 263	Introduction to Linear Dynamical Systems	
	EE 278	Introduction to Statistical Signal Processing	
	EE 282	Computer Systems Architecture	
	EE 364A	Convex Optimization I	
	EE 364B	Convex Optimization II	
	MS&E 220	Probabilistic Analysis	
	MS&E 223	Simulation	
	MS&E 226	Fundamentals of Data Science: Prediction, Inference, Causality	
	MS&E 251	Introduction to Stochastic Control with Applications	
	MS&E 334	Topics in Social Data	
	MATH 104	Applied Matrix Theory	
	MATH 106	Functions of a Complex Variable	
	MATH 107	Graph Theory	
	MATH 108	Introduction to Combinatorics and Its Applications	
	MATH 113	Linear Algebra and Matrix Theory	
	MATH 114	Introduction to Scientific Computing	
	MATH 115	Functions of a Real Variable	
	MATH 116	Complex Analysis	
	MATH 131P	Partial Differential Equations	
	MATH 136	Stochastic Processes	
	MATH 158	Basic Probability and Stochastic Processes with Engineering Applications	
	MATH 159	Discrete Probabilistic Methods	
	MATH 171	Fundamental Concepts of Analysis	
	MATH 172	Lebesgue Integration and Fourier Analysis	
	PHIL 151	Metalogic	
	STATS 100	Mathematics of Sports	
	STATS 101	Data Science 101	

STATS 202	Data Mining and Analysis
STATS 206	Applied Multivariate Analysis
STATS 207	Introduction to Time Series Analysis
STATS 208	Bootstrap, Cross-Validation, and Sample Re-use
STATS 215	Statistical Models in Biology
STATS 216	Introduction to Statistical Learning
STATS 217	Introduction to Stochastic Processes I
STATS 218	Introduction to Stochastic Processes II
STATS 219	Stochastic Processes
STATS 240	Statistical Methods in Finance
STATS 270	A Course in Bayesian Statistics
	e (CS), electives can include courses not the CS list above and the following:
CME 206	Introduction to Numerical Methods for Engineering
CME 211	Software Development for Scientists and Engineers
CME 302	Numerical Linear Algebra
CS 108	Object-Oriented Systems Design
CS 110	Principles of Computer Systems
CS 140	Operating Systems and Systems Programming
CS 143	Compilers
CS 157	Computational Logic
CS 161	Design and Analysis of Algorithms
CS 194	Software Project
CS 221	Artificial Intelligence: Principles and Techniques
CS 223A	Introduction to Robotics
CS 225A	Experimental Robotics
CS 228	Probabilistic Graphical Models: Principles and Techniques
CS 229	Machine Learning
CS 243	Program Analysis and Optimizations
CS 246	Mining Massive Data Sets
CS 248	Interactive Computer Graphics

Data Mining and Analysis

STATS 202

Electives that are not offered this year, but may be offered in subsequent years, are eligible for credit toward the major.

With the advisor's approval, courses other than those listed or offered by the sponsoring departments may be used to fulfill part of the elective requirement. Courses must provide skills relevant to the MCS degree and do not overlap courses in the student's program. Depending on student's interests, these may be in fields such as, biology, economics, electrical engineering, industrial engineering, and medicine, are otherwise relevant to a mathematical sciences major.

Total Units 76-89

Students who scored a 5 on both the Calculus AB and BC advanced placement exams (total of 10 units) can be waived out of MATH 19 Calculus, MATH 20 Calculus, MATH 21 Calculus; See also the Registrar's Advanced Placement (https://registrar.stanford.edu/students/transfer-credit/advanced-placement/) web site (AP (https://registrar.stanford.edu/students/transfer-credit-and-advanced-placement/advanced-placement/ap-credit-chart/) or IB (https://registrar.stanford.edu/students/transfer-credit-and-advanced-placement/advanced-placement/ib-credit-chart/) exams). Students who place out of MATH 19, 20, and 21 are required to take additional Math classes as discussed with MCS student services and the student's faculty advisor.

Mathematical and Computational Science Tracks

MCS program has designed three tracks to allow majors to pursue their interests in fields where applied mathematics and statistical analysis is utilized. Declared MCS majors are not required to choose a track. These tracks are not declared in Axess and are not printed on the transcript or diploma.

Biology Track

Students in the Biology track take the introductory courses for the Mathematics and Computational Science major with the following allowable substitutions as electives.

		Units
STATS/BIO 141	Biostatistics ¹	5
Allowable Elective 0	Course Substitutions:	
Take three courses	from Foundational Biology Core:	10
BIO 82	Genetics	
BIO 83	Biochemistry & Molecular Biology	
BIO 84	Physiology	
BIO 85	Evolution	
BIO 86	Cell Biology	
Or take two courses from the Biology core and one of the following:		3-4
BIO 104	Advance Molecular Biology: Epigenetics and Proteostasis	
BIO 133	(no longer offered)	
BIO 144	Conservation Biology: A Latin American Perspective	
BIO 183	Theoretical Population Genetics (offered alternate years)	
BIO 230	Molecular and Cellular Immunology	
Honors students select the following three courses:		1-4
STATS 155	Modern Statistics for Modern Biology	
BIO 113	Fundamentals of Molecular Evolution	
BIO 146	Genes and Disease (no longer offered)	
The fellowing cours	an are no langer offered but may be used by	

The following courses are no longer offered, but may be used by students who completed them in fulfillment of this requirement: BIO102, 160A & 160B

STATS 141 (https://explorecourses.stanford.edu/ search/?view=catalog&filter-coursestatus-Active=on&page=0&catalog=&academicYear=&q=stats141&collapse=): Biostatis (BIO 141) can replace STATS 191 Introduction to Applied Statistics or STATS 203 Introduction to Regression Models and Analysis of Variance from the major's Statistics core requirement.

Engineering Track

Students in the Engineering track take the introductory courses for the Mathematics and Computational Sciences major with the following allowable substitutions.

Units 15

With consent of an MCS advisor, MATH 51, MATH 52, MATH 53 series may be substituted for CME 100, CME 102, CME 104. Depending on the exact material taught in relevant years, an additional math course may be necessary ¹

CME 100	Vector Calculus for Engineers
CME 102	Ordinary Differential Equations for Engineers

CME 104/ ENGR 155B	Linear Algebra and Partial Differential Equations for Engineers	
STATS 116 may be re	placed by:	3-5
STATS 110	Statistical Methods in Engineering and the Physical Sciences	
STATS 191/STATS 20	03 may be replaced by:	3-4
STATS 202	Data Mining and Analysis	
Allowable Elective Co	ourse Substitutions:	9
Select one of the follo	owing:	3-4
MATH 106	Functions of a Complex Variable	
MATH 108	Introduction to Combinatorics and Its Applications	
MATH 116	Complex Analysis	
PHIL 151	Metalogic	
Select two of the following:		3-5
ENGR 15	Dynamics	
ENGR 20	Introduction to Chemical Engineering	
ENGR 25B		
ENGR 40	(no longer offered)	
ENGR 50	Introduction to Materials Science, Nanotechnology Emphasis	
ENGR 105	Feedback Control Design	

Only MCS majors pursuing the engineering track may petition their advisor to substitute the required Math series for CME courses listed above.

Statistics Track

Students in the Statistics track take the introductory courses for the Mathematics and Computational Sciences major with the following additional courses - (87 units total)

Required:

Additional Courses f	or the Statistics Track:	Units 9
STATS 217	Introduction to Stochastic Processes I	
Advanced CS, such a	as:	3
CS 246	Mining Massive Data Sets	
Advanced MS&E, su	ch as:	3
MS&E 220	Probabilistic Analysis	
or		
MS&E 223	Simulation	
Allowable Elective C	ourse Substitutions:	9
Select three of the fo	ollowing:	
STATS 202	Data Mining and Analysis	
STATS 206	Applied Multivariate Analysis	
STATS 207	Introduction to Time Series Analysis	
STATS 208	Bootstrap, Cross-Validation, and Sample Re-use	
STATS 216	Introduction to Statistical Learning	
STATS 219	Stochastic Processes	
STATS 270	A Course in Bayesian Statistics	

Honors Program

The honors program is designed to encourage a more intensive study of mathematical sciences than the B.S. program. Students interested in honors should consult with their faculty advisor as soon as possible to allow more opportunities in course planning and concentration area. The honors program allows for a capstone experience, building upon

the student's current academic knowledge and strengthening their understanding in a specific field of study/concentration. Honors work may be concentrated in fields such as biological sciences and medicine, environment, physics, sports analytics, investment science, Al/machine learning, etc.

Students are required to submit an MCS Honors Proposal Form (https://mcs.stanford.edu/sites/g/files/sbiybj9376/f/mcs_honors_proposal_form_2019-20.pdf) describing the concentration for honors work, including the courses they intend to use, by the final study list deadline two quarters prior to the expected degree conferral quarter. The honors final report is due no later than the last day of classes of the quarter the student expects to graduate. More information can be found on the MCS Honors Website. (https://mcs.stanford.edu/academics/honors/)

In addition to meeting all requirements for the B.S., the student must:

- 1. Maintain a GPA of at least 3.5 in all major coursework.
- 2. Students should complete 15 units of graduate level coursework. Included in these 15 units can be any of the following:
 - a. Related research from a 199 course
 - b. Participation for credit in a small group seminar
 - c. Directed reading
- 3. Complete a final report which should:
 - a. Include their name, degree and the title of their work.
 - b. Be typed with 12pt font, single-spaced, minimum 1 page (no longer than 2 pages) with a one-inch margin at the top and bottom of each page.
 - Explain a theme between the student's coursework, their interests, and how they relate to MCS.
 - d. Describe how each course selected added to the student's knowledge and understanding in the chosen area of concentration.
 - e. The student's work must demonstrate in-depth learning of a topic or shared idea in the breadth of the MCS major (examples are on MCS webpage), and all students are held to Stanford's Honor Code (https://communitystandards.stanford.edu/policies-and-guidance/honor-code/).

Units Suggested electives for students pursuing honors:

Introduction to Numerical Methods for Engineering	3
Machine Learning	3-4
Interactive Computer Graphics	3-4
Convex Optimization I	3
Fundamental Concepts of Analysis	3
Lebesgue Integration and Fourier Analysis	3
Real Analysis	3
Data Mining and Analysis	3
Introduction to Statistical Learning	3
Introduction to Stochastic Processes I	3
	Engineering Machine Learning Interactive Computer Graphics Convex Optimization I Fundamental Concepts of Analysis Lebesgue Integration and Fourier Analysis Real Analysis Data Mining and Analysis Introduction to Statistical Learning

return to top of page (p. 1)

Minor in Mathematical and Computational Science

The minor in Mathematical and Computational Science is intended to provide an experience of the four constituent areas: Mathematics, Computer Science, Management Science and Engineering, and Statistics. The minor consists of nine courses for a minimum of 32 units. A grade point average (GPA) of 2.75 is required for courses fulfilling the minor. All courses for the minor must be taken for a letter grade, if offered.

Degree Requirements

Mathematics (MAT	H)	3-5
Select one of the fo		
MATH 51	Linear Algebra, Multivariable Calculus, and Modern Applications	
MATH 104	Applied Matrix Theory	
Computer Science ((CS)	10
Select two of the fo	llowning:	
CS 106A	Programming Methodology	5
and either		
CS 106B	Programming Abstractions	5
or CS 106X	Programming Abstractions	
Management Scien	ce and Engineering (MS&E)	3-4
Select one of the fo	llowing:	
MS&E 211	Introduction to Optimization	
MS&E 221	Stochastic Modeling	
Statistics (STATS)		7
Select two of the fo	llowing:	
STATS 116	Theory of Probability	4
and either	·	
STATS 191	Introduction to Applied Statistics	3-4
or STATS 200	Introduction to Statistical Inference	
Electives		9
The minor requires different departmen	three courses, two of which must be in ints.	
Select three of the f	following:	
CME 108	Introduction to Scientific Computing	
CS 103	Mathematical Foundations of Computing	
CS 107	Computer Organization and Systems	
CS 154	Introduction to the Theory of Computation	
CS 161	Design and Analysis of Algorithms	
ECON 160	Game Theory and Economic Applications	
EE 261	The Fourier Transform and Its Applications	
MS&E 211	Introduction to Optimization	
MS&E 212	Mathematical Programming and Combinatorial Optimization	
MS&E 221	Stochastic Modeling	
MS&E 251	Introduction to Stochastic Control with Applications	
MATH 104	Applied Matrix Theory	
MATH 106	Functions of a Complex Variable	
MATH 108	Introduction to Combinatorics and Its Applications	
MATH 109	Applied Group Theory	
MATH 110	Applied Number Theory and Field Theory	
MATH 115	Functions of a Real Variable	
MATH 131P	Partial Differential Equations	

MATH 171	Fundamental Concepts of Analysis
PHIL 151	Metalogic
STATS 191	Introduction to Applied Statistics
STATS 200	Introduction to Statistical Inference
STATS 202	Data Mining and Analysis
STATS 203	Introduction to Regression Models and Analysis of Variance
STATS 217	Introduction to Stochastic Processes I

Other upper-division courses appropriate to the program major may be substituted with consent of MCS program director. Undergraduate majors in the constituent programs may not count courses in their own departments.

Total Units 32-34

COVID-19 Policies

Units

On July 30, the Academic Senate adopted grading policies effective for all undergraduate and graduate programs, excepting the professional Graduate School of Business, School of Law, and the School of Medicine M.D. Program. For a complete list of those and other academic policies relating to the pandemic, see the "COVID-19 and Academic Continuity (http://exploredegrees.stanford.edu/covid-19-policy-changes/#tempdepttemplatetabtext)" section of this bulletin.

The Senate decided that all undergraduate and graduate courses offered for a letter grade must also offer students the option of taking the course for a "credit" or "no credit" grade and recommended that deans, departments, and programs consider adopting local policies to count courses taken for a "credit" or "satisfactory" grade toward the fulfillment of degree-program requirements and/or alter program requirements as appropriate.

Undergraduate Degree Requirements Grading

The MCS program counts all courses taken in academic year 2020-21 with a grade of 'CR' (credit) or 'S' (satisfactory) towards satisfaction of undergraduate degree requirements and minor that otherwise require a letter grade.

Faculty

Director: Professor Guenther Walther

Associate Director: Professor Chiara Sabatti

Faculty Advisers: Assistant Professor John Duchi, Professor Bradley Efron, Associate Professor David Rogosa, Assistant Professor Johan Ugander, Assistant Professor Scott Linderman

Steering Committee: Takeshi Amemiya (Economics, emeritus), Emmanuel Candès (Mathematics, Statistics), Brian Conrad (Mathematics), Richard Cottle (Management Science and Engineering, emeritus), John Duchi (Electrical Engineering & Statistics), Darrel Duffie (Economics & GSB), Bradley Efron (Statistics), Peter Glynn (Management Science and Engineering), Ramesh Johari (Management Science and Engineering), Percy Liang (Computer Science & Statistics), Parviz Moin (Mechanical Engineering), George Papanicolaou (Mathematics), David Rogosa (Education & Statistics), Chiara Sabatti (Biomedical Data Science & Statistics), David Siegmund (Statistics), Jonathan Taylor (Statistics), Brian White (Mathematics)

Courses

MCS 198. Practical Training. 1 Unit.

For students majoring in Mathematical and Computational Science only. Students obtain employment in a relevant industrial or research activity to enhance their professional experience. Students may enroll in Summer Quarters only and for a total of three times. Students must first notify their MCS adviser before enrolling in their course section, and must submit a one-page written final report summarizing the knowledge/experience gained upon completion of the internship in order to receive credit.